Question #103557
Solve the following ordinary differential equations

(a) dy/dx+ycotx=power of e is cosx
For x=π/2 y=-2

(b) d square y/dx square + dy/dx + y =0
1
Expert's answer
2020-02-24T10:47:22-0500

a)


dydx+ycotx=ecosx\frac{dy}{dx}+y\cot x=e^{cosx}

p=cotx,q=ecosxp=\cot x, q=e^{cosx}

IF=exppdx=expcotxdx=exp(lnsinx)IF=\exp\int pdx=\exp\int \cot xdx=\exp (\ln\sin x)

IF=sinxIF=\sin x

ysinx=ecosxsinxdx=cecosxy\sin x=\int e^{cosx}\sin x dx=c-e^{cosx}

2sin90=cecos90c=1-2\sin 90=c-e^{cos90}\to c=-1

y=1+ecos90sinxy=-\frac{1+e^{cos90}}{\sin x}

b)


d2ydx2+dydx+y=0y=eλx\frac{d^2y}{dx^2}+\frac{dy}{dx}+y=0\to y=e^{\lambda x}

λ2+λ+1=0\lambda ^2+\lambda +1=0

λ1,2=1±32\lambda_{1,2}=\frac{-1\pm \sqrt{3}}{2}

y=c1ex2sin(32x)+c2ex2cos(32x)y=c_1e^{-\frac{x}{2}}\sin\left (\frac{\sqrt{3}}{2}x\right)+c_2e^{-\frac{x}{2}}\cos\left (\frac{\sqrt{3}}{2}x\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS