Answer to Question #103557 in Mechanics | Relativity for Praveen
Solve the following ordinary differential equations
(a) dy/dx+ycotx=power of e is cosx
For x=π/2 y=-2
(b) d square y/dx square + dy/dx + y =0
1
2020-02-24T10:47:22-0500
a)
"\\frac{dy}{dx}+y\\cot x=e^{cosx}"
"p=\\cot x, q=e^{cosx}"
"IF=\\exp\\int pdx=\\exp\\int \\cot xdx=\\exp (\\ln\\sin x)"
"IF=\\sin x"
"y\\sin x=\\int e^{cosx}\\sin x dx=c-e^{cosx}"
"-2\\sin 90=c-e^{cos90}\\to c=-1"
"y=-\\frac{1+e^{cos90}}{\\sin x}"
b)
"\\frac{d^2y}{dx^2}+\\frac{dy}{dx}+y=0\\to y=e^{\\lambda x}"
"\\lambda ^2+\\lambda +1=0"
"\\lambda_{1,2}=\\frac{-1\\pm \\sqrt{3}}{2}"
"y=c_1e^{-\\frac{x}{2}}\\sin\\left (\\frac{\\sqrt{3}}{2}x\\right)+c_2e^{-\\frac{x}{2}}\\cos\\left (\\frac{\\sqrt{3}}{2}x\\right)"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment