2020-02-22T00:26:13-05:00
Solve the following ordinary differential equations
(a) dy/dx+ycotx=power of e is cosx
For x=π/2 y=-2
(b) d square y/dx square + dy/dx + y =0
1
2020-02-24T10:47:22-0500
a)
d y d x + y cot x = e c o s x \frac{dy}{dx}+y\cot x=e^{cosx} d x d y + y cot x = e cos x
p = cot x , q = e c o s x p=\cot x, q=e^{cosx} p = cot x , q = e cos x
I F = exp ∫ p d x = exp ∫ cot x d x = exp ( ln sin x ) IF=\exp\int pdx=\exp\int \cot xdx=\exp (\ln\sin x) I F = exp ∫ p d x = exp ∫ cot x d x = exp ( ln sin x )
I F = sin x IF=\sin x I F = sin x
y sin x = ∫ e c o s x sin x d x = c − e c o s x y\sin x=\int e^{cosx}\sin x dx=c-e^{cosx} y sin x = ∫ e cos x sin x d x = c − e cos x
− 2 sin 90 = c − e c o s 90 → c = − 1 -2\sin 90=c-e^{cos90}\to c=-1 − 2 sin 90 = c − e cos 90 → c = − 1
y = − 1 + e c o s 90 sin x y=-\frac{1+e^{cos90}}{\sin x} y = − sin x 1 + e cos 90
b)
d 2 y d x 2 + d y d x + y = 0 → y = e λ x \frac{d^2y}{dx^2}+\frac{dy}{dx}+y=0\to y=e^{\lambda x} d x 2 d 2 y + d x d y + y = 0 → y = e λ x
λ 2 + λ + 1 = 0 \lambda ^2+\lambda +1=0 λ 2 + λ + 1 = 0
λ 1 , 2 = − 1 ± 3 2 \lambda_{1,2}=\frac{-1\pm \sqrt{3}}{2} λ 1 , 2 = 2 − 1 ± 3
y = c 1 e − x 2 sin ( 3 2 x ) + c 2 e − x 2 cos ( 3 2 x ) y=c_1e^{-\frac{x}{2}}\sin\left (\frac{\sqrt{3}}{2}x\right)+c_2e^{-\frac{x}{2}}\cos\left (\frac{\sqrt{3}}{2}x\right) y = c 1 e − 2 x sin ( 2 3 x ) + c 2 e − 2 x cos ( 2 3 x )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments