Solve the following ordinary differential equations
(a) dy/dx+ycotx=power of e is cosx
For x=π/2 y=-2
(b) d square y/dx square + dy/dx + y =0
1
2020-02-24T10:47:22-0500
a)
dxdy+ycotx=ecosx
p=cotx,q=ecosx
IF=exp∫pdx=exp∫cotxdx=exp(lnsinx)
IF=sinx
ysinx=∫ecosxsinxdx=c−ecosx
−2sin90=c−ecos90→c=−1
y=−sinx1+ecos90
b)
dx2d2y+dxdy+y=0→y=eλx
λ2+λ+1=0
λ1,2=2−1±3
y=c1e−2xsin(23x)+c2e−2xcos(23x)
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments