Question #103276
Show that the average energy of a weakly damped oscillator is given by:
< E > = E0 exp (-2bt)
1
Expert's answer
2020-02-27T09:58:23-0500

The energy of the system is


E(t)=KE(t)+U(t)=12m(dxdt)2+12kx2.E(t)=KE(t)+U(t)=\frac{1}{2}m\bigg(\frac{dx}{dt}\bigg)^2+\frac{1}{2}kx^2.

The instantaneous displacement of a weakly damped harmonic oscillator is


x(t)=a0exp(bt)cos(ωdt+ϕ), dx(t)dt=a0exp(bt)[bcos(ωdt+ϕ)+ωdsin(ωdt+ϕ)], KE(t)=12ma02exp(2bt)[bcos(ωdt+ϕ)+ωdsin(ωdt+ϕ)]2x (t) = a_0 \text{exp} (- bt)\cdot \text{cos} (\omega_dt + \phi),\\ \space\\ \frac{dx(t)}{dt}= - a_0 \text{exp} (- bt) [b \text{cos} (\omega_dt + \phi) + \omega_d\text{sin} (\omega_dt + \phi)],\\ \space\\ KE(t)=\frac{1}{2}ma_0^2 \text{exp}(-2bt) [b\text{cos} (\omega_dt + \phi) + \omega_d\text{sin} (\omega_dt + \phi)]^2


(open the squared parentheses).

The potential energy is


U=12kx2= =12ka02exp(2bt)cos2(ωdt+ϕ).U=\frac{1}{2}kx^2=\\ \space\\ =\frac{1}{2}ka_0^2 \text{exp} (-2bt)\cdot \text{cos}^2 (\omega_dt + \phi).

Remember that


k=mω02.k=m\omega_0^2.

U=12kx2= =12mω02a02exp(2bt)cos2(ωdt+ϕ).U=\frac{1}{2}kx^2=\\ \space\\ =\frac{1}{2}m\omega_0^2a_0^2 \text{exp} (-2bt)\cdot \text{cos}^2 (\omega_dt + \phi).

During one oscillation, for small amplitudes, the average values of sine and cosine squared are equal


sin2(ωdt+ϕ)=cos2(ωdt+ϕ)=12.\text{sin}^2 (\omega_dt + \phi)=\text{cos}^2 (\omega_dt + \phi)=\frac{1}{2}.

Remember that the average values of sine per one oscillation is 0.

Therefore, after adding the KE with opened parentheses and U, we get


<E>=12ma02exp(2bt)[b2+ω022+ωd22]= =12ma02ω02exp(2bt).<E>=\frac{1}{2}ma_0^2 \text{exp}(-2bt)\bigg[\frac{b^2+\omega_0^2}{2}+\frac{\omega_d^2}{2}\bigg]=\\ \space\\ =\frac{1}{2}ma_0^2\omega^2_0\text{exp}(-2bt).

Since


12ma02ω02=E0,\frac{1}{2}ma_0^2\omega^2_0=E_0,

we can finally write

<E>=E0exp(2bt).<E>=E_0\text{exp}(-2bt).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS