Assuming that the acceleration is constant will write the equation for displacement (1) and acceleration (2):
"s = s_0 + v_0t + \\cfrac{at^2}2 \\qquad \\text{(1)} \\\\\n\na = \\cfrac{v-v_0}t \\qquad \\text{(2)}"
Сonsidering that the initial velocity ("v_0" ) and initial displacement ("s_0" ) are zero, can write:
"s = \\cfrac{at^2}2 \\qquad \\text{(1.a)} \\\\\n\na = \\cfrac v t \\qquad \\text{(2.a)}"
Multiply (1.a) of "2a" :
"2as = a^2t^2 \\qquad \\text{(1.b)} \\\\\n\na = \\cfrac {v} {t} \\qquad \\text{(2.b)}"
Substitute the expression for "a" from (2.b) into the right side of (1.b)
"2as = \\Big(\\cfrac v t\\Big)^2 t^2 = v^2 \\qquad \\text{(1.c)}"
Define the acceleration:
"a = \\cfrac {v^2} {2s} = \\cfrac {305^2} {2*6} \\approx 7752 \\text{ (m\/s)}"
Comments
Leave a comment