Question #101963
At the top of trajectory ,a mortar shell explodes into two fragments ;a 2.5kg pieces moves south west with a horizontal velocity of 100m/s while 3.5kg piece moves north with a horizontal velocity of 70 m/s.what was the horizontal direction of the cell just before explosion
1
Expert's answer
2020-01-29T14:01:18-0500

m1=2.5  kgm_1=2.5 \; kg

m2=3.5  kgm_2=3.5 \; kg

m=m1+m2=6  kgm=m_1+m_2=6\; kg

v1=100  m/sv_1=100 \;m/s

v2=70  m/sv_2=70\; m/s

v?v-?

Solution:



Total momentum before the explosion is equal to the total momentum after the explosion:

p=p1+p2p=p_1+p_2

p=mv,  p1=m1v1,p2=m2v2p=m\overline{v}, \; p_1=m_1\overline{v_1}, p_2=m_2\overline{v_2}


6v=2.5v1+3.5v26\overline{v}=2.5\overline{v_1}+3.5\overline{v_2}


x-axis:

6vx=2.5v1x+3.5v2x=2.5×(cos(45))×100+3.5×cos(90)×70=6v_x=2.5v_{1x}+3.5v_{2x}=2.5\times (-\cos(45^{\circ}))\times 100+3.5\times\cos(90^{\circ})\times70=

=2.5×(12)×100+0=1252=2.5\times(-\frac{1}{\sqrt{2}})\times 100+0= -125\sqrt{2}

vx=12526v_x=\frac{-125\sqrt{2}}{6}


y-axis:

6vy=2.5v1y+3.5v2y=2.5×(cos(45))×100+3.5×cos(0)×70=6v_y=2.5v_{1y}+3.5v_{2y}=2.5\times (-\cos(45^{\circ}))\times 100+3.5\times\cos(0^{\circ})\times70=

=2.5×(12)×100+3.5×1×70=2451252=2.5\times(-\frac{1}{\sqrt{2}})\times 100+3.5\times1\times70=245 -125\sqrt{2}

vy=24512526v_y=\frac{245-125\sqrt{2}}{6}


v=v12+v22=16(1252)2+(2451252)2=31.58  m/sv=\sqrt{{v_1}^2+{v_2}^2}=\frac{1}{6}\sqrt{(-125\sqrt{2})^2+(245-125\sqrt{2})^2}=31.58 \;m/s


Answer: v=31.58  m/s.v=31.58 \; m/s.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Kachi
04.04.20, 18:29

Thanks A lot

LATEST TUTORIALS
APPROVED BY CLIENTS