"m_1=2.5 \\; kg"
"m_2=3.5 \\; kg"
"m=m_1+m_2=6\\; kg"
"v_1=100 \\;m\/s"
"v_2=70\\; m\/s"
"v-?"
Solution:
Total momentum before the explosion is equal to the total momentum after the explosion:
"p=p_1+p_2"
"p=m\\overline{v}, \\; p_1=m_1\\overline{v_1}, p_2=m_2\\overline{v_2}"
"6\\overline{v}=2.5\\overline{v_1}+3.5\\overline{v_2}"
x-axis:
"6v_x=2.5v_{1x}+3.5v_{2x}=2.5\\times (-\\cos(45^{\\circ}))\\times 100+3.5\\times\\cos(90^{\\circ})\\times70="
"=2.5\\times(-\\frac{1}{\\sqrt{2}})\\times 100+0= -125\\sqrt{2}"
"v_x=\\frac{-125\\sqrt{2}}{6}"
y-axis:
"6v_y=2.5v_{1y}+3.5v_{2y}=2.5\\times (-\\cos(45^{\\circ}))\\times 100+3.5\\times\\cos(0^{\\circ})\\times70="
"=2.5\\times(-\\frac{1}{\\sqrt{2}})\\times 100+3.5\\times1\\times70=245 -125\\sqrt{2}"
"v_y=\\frac{245-125\\sqrt{2}}{6}"
"v=\\sqrt{{v_1}^2+{v_2}^2}=\\frac{1}{6}\\sqrt{(-125\\sqrt{2})^2+(245-125\\sqrt{2})^2}=31.58 \\;m\/s"
Answer: "v=31.58 \\; m\/s."
Comments
Thanks A lot
Leave a comment