V(x)=a4E(x4+4ax3−8a2x2)
*q isn’t given, so I think there should be a (in this case we know, that a ≠ 0)
For the equilibrium positions, dxdV will be zero.
dxdV=dxd(q4E(x4+4ax3−8a2x2))=q4E(4x3+12ax2−16a2x)=0
a4E4x(x2+3ax−4a2)=0
x(x+4a)(x−a)=0
x1=0,x2=−4a,x3=a (if a≠0, then all these points are different)
For stable equilibrium dx2d2V must be greater than zero so that potential energy is a minimum.
dx2d2V=dxd(a4E(4x3+12ax2−16a2x))=a4E(12x2+24ax−16a2)
At x=0 gives dx2d2V=−a216E
At x=−4a: dx2d2V=a280E
At x=a:dx2d2V=a220E
Answer:
if E>0:x1=−4a,x2=a are positions of stable equilibrium
if E<0:x=0 is the point of stable equilibrium
if E=0⇒V(x)=0 neutral equilibrium.
Comments