Question #101611
Find the positions at which a particle of mass m move on the x-axis with energy v=E/q^4(x^4+4ax^3-8a^2x^2) is in stable equilibrium
1
Expert's answer
2020-01-22T04:23:50-0500

V(x)=Ea4(x4+4ax38a2x2)V(x)=\frac{E}{a^4}(x^4+4ax^3-8a^2x^2)

*q isn’t given, so I think there should be a (in this case we know, that a ≠ 0)


For the equilibrium positions, dVdx\frac{d V}{d x } will be zero.

dVdx=ddx(Eq4(x4+4ax38a2x2))=Eq4(4x3+12ax216a2x)=0\frac{d V}{d x}=\frac{d}{d x}(\frac{E}{q^4}(x^4+4ax^3-8a^2x^2))=\frac{E}{q^4}(4x^3+12ax^2-16a^2x)=0

Ea44x(x2+3ax4a2)=0\frac{E}{a^4} 4x(x^2+3ax-4a^2)=0

x(x+4a)(xa)=0x(x+4a)(x-a)=0

x1=0,x2=4a,x3=ax_1=0, x_2=-4a, x_3=a (if a≠0, then all these points are different)


For stable equilibrium d2Vdx2\frac{d ^2 V}{d x^2} must be greater than zero so that potential energy is a minimum.

d2Vdx2=ddx(Ea4(4x3+12ax216a2x))=Ea4(12x2+24ax16a2)\frac {d^2 V}{d x ^2}=\frac{d}{dx}(\frac{E}{a^4}(4x^3+12ax^2-16a^2x))=\frac{E}{a^4}(12x^2+24ax-16a^2)

At x=0x=0 gives d2Vdx2=16Ea2\frac{d ^2 V}{d x^2}=-\frac{16E}{a^2}

At x=4a:x=-4a: d2Vdx2=80Ea2\frac{d ^2 V}{d x^2}=\frac{80E}{a^2}

At x=a:d2Vdx2=20Ea2x=a: \frac{d ^2 V}{d x^2}=\frac{20E}{a^2}


Answer:

if E>0:  x1=4a,x2=aE>0: \; x_1=-4a,x_2=a are positions of stable equilibrium

if E<0:  x=0E<0: \;x=0 is the point of stable equilibrium

if E=0V(x)=0E=0 \Rightarrow V(x)=0 neutral equilibrium.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS