We write the momentum equations in the x and y direction.
in the x direction
"m_1 \\cdot v_1=m_1 \\cdot u_1 \\cdot cos{(\\phi_1)}+m_2 \\cdot u_2 \\cdot cos{(\\phi_2)}" (1)
in the y direction
"0=-m_1 \\cdot u_2 \\cdot sin{(\\phi_1)}+m_2 \\cdot u_2 \\cdot sin{(\\phi_2)}" (2)
we write the law of conservation of kinetic energy before and after the collision
"\\frac{m_1v_1^2}{2}=\\frac{m_1u_1^2}{2}+\\frac{m_2u_2^2}{2}"
by condition "m_1=m_2"
Then write
"v_1^2=u_1^2+u_2^2"
where from
"u_1=\\sqrt{v_1^2-u_2^2}=\\sqrt{1^2-0.543^2}=0.84m\/s"
using equation (2), we determine the angle "\\phi_1"
"0=-m_1 \\cdot u_1 \\cdot sin{(\\phi_1)}+m_2 \\cdot u_2 \\cdot sin{(\\phi_2)}"
"u_1 \\cdot sin{(\\phi_1)}=u_2 \\cdot sin{(\\phi_2)}"
"sin{(\\phi_1)}=\\frac{u_2 \\cdot sin(\\phi_2)}{u_1}=\\frac{0.543 \\cdot sin(57.2^o)}{0.84}=" 0.543
Then
"\\phi_1=\\arcsin(0.543)=32.888^o"
Comments
Leave a comment