B=6i+j+2kD=−i+3jB.D=(6i+j+2k).(−i+3j)B.D=(−6+3)=−3 B=6i+j+2k \newline D=-i+3j \newline B.D=(6i+j+2k ).(-i+3j) \newline B.D=(-6+3)=-3 \\~\\B=6i+j+2kD=−i+3jB.D=(6i+j+2k).(−i+3j)B.D=(−6+3)=−3
From the equation,
B.D=∣B∣∣D∣cos(θ)B.D=|B||D|cos(\theta)B.D=∣B∣∣D∣cos(θ) where θ\thetaθ is the angle between two vectors
cos(θ)=−3(41)(10)θ=cos−1(−3410)θ=98.52°\cos(\theta)=\frac{-3}{(\sqrt{41})(\sqrt{10})} \newline \theta=cos^{-1}(\frac{-3}{\sqrt{410}}) \newline \theta=98.52\degreecos(θ)=(41)(10)−3θ=cos−1(410−3)θ=98.52°
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments