Question #90877
How does F^{mu nu} tensor is connected with the E and B vectors?
1
Expert's answer
2019-06-18T08:09:00-0400

By definition 


Fμν=μAννAμF^{\mu\nu}=\partial^\mu A^\nu-\partial^\nu A^\mu

where (c=1)


μ=(t,),=(x,y,z)\partial^\mu=(\frac{\partial}{\partial t},-\nabla)\,,\quad \nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})

Connection between the vectors E\vec{E} , B\vec{B} and 4-vector Aμ=(A0,A)A^\mu=(A^0,\vec{A}) is


E=A00A,B=curlA=×A\vec{E}=-\nabla A^0-\partial^0\vec{A}\,,\quad \vec{B}=\operatorname{curl}\vec{A}=\nabla\times\vec{A}

So

F0i=0AiiA0=0Ai+iA0=Ei,i=1,2,3F^{0i}=\partial^0 A^i-\partial^i A^0=\partial^0 A^i+\nabla_i A^0=-\vec{E}_i\,,\quad i=1,2,3

F12=1A22A1=xAy+yAx=[×A]z=BzF^{12}=\partial^1 A^2-\partial^2A^1=-\partial_x A_y+\partial_y A_x=-[\nabla\times\vec{A}]_z=-{B}_z

F13=1A33A1=xAz+zAx=[×A]y=ByF^{13}=\partial^1 A^3-\partial^3A^1=-\partial_x A_z+\partial_z A_x=[\nabla\times\vec{A}]_y={B}_yF23=2A33A2=yAz+zAy=[×A]x=BxF^{23}=\partial^2 A^3-\partial^3A^2=-\partial_y A_z+\partial_z A_y=-[\nabla\times\vec{A}]_x=-{B}_x

Taking into account that Fμν=FνμF^{\mu\nu}=-F^{\nu\mu} and Fμμ=0F^{\mu\mu}=0 we have

Fμν=(0ExEyEyEx0BzByEyBz0BxEzByBx0)F^{\mu\nu}= \left( \begin{array}{cccc} 0&-E_x&-E_y&-E_y\\ E_x&0&-B_z&B_y\\ E_y&B_z&0&-B_x\\ E_z&-B_y&B_x&0\\ \end{array} \right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS