By definition
Fμν=∂μAν−∂νAμ where (c=1)
∂μ=(∂t∂,−∇),∇=(∂x∂,∂y∂,∂z∂) Connection between the vectors E , B and 4-vector Aμ=(A0,A) is
E=−∇A0−∂0A,B=curlA=∇×A So
F0i=∂0Ai−∂iA0=∂0Ai+∇iA0=−Ei,i=1,2,3
F12=∂1A2−∂2A1=−∂xAy+∂yAx=−[∇×A]z=−Bz
F13=∂1A3−∂3A1=−∂xAz+∂zAx=[∇×A]y=ByF23=∂2A3−∂3A2=−∂yAz+∂zAy=−[∇×A]x=−BxTaking into account that Fμν=−Fνμ and Fμμ=0 we have
Fμν=⎝⎛0ExEyEz−Ex0Bz−By−Ey−Bz0Bx−EyBy−Bx0⎠⎞
Comments