By definition
F μ ν = ∂ μ A ν − ∂ ν A μ F^{\mu\nu}=\partial^\mu A^\nu-\partial^\nu A^\mu F μν = ∂ μ A ν − ∂ ν A μ where (c=1)
∂ μ = ( ∂ ∂ t , − ∇ ) , ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) \partial^\mu=(\frac{\partial}{\partial t},-\nabla)\,,\quad
\nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}) ∂ μ = ( ∂ t ∂ , − ∇ ) , ∇ = ( ∂ x ∂ , ∂ y ∂ , ∂ z ∂ ) Connection between the vectors E ⃗ \vec{E} E , B ⃗ \vec{B} B and 4-vector A μ = ( A 0 , A ⃗ ) A^\mu=(A^0,\vec{A}) A μ = ( A 0 , A ) is
E ⃗ = − ∇ A 0 − ∂ 0 A ⃗ , B ⃗ = curl A ⃗ = ∇ × A ⃗ \vec{E}=-\nabla A^0-\partial^0\vec{A}\,,\quad
\vec{B}=\operatorname{curl}\vec{A}=\nabla\times\vec{A} E = − ∇ A 0 − ∂ 0 A , B = curl A = ∇ × A So
F 0 i = ∂ 0 A i − ∂ i A 0 = ∂ 0 A i + ∇ i A 0 = − E ⃗ i , i = 1 , 2 , 3 F^{0i}=\partial^0 A^i-\partial^i A^0=\partial^0 A^i+\nabla_i A^0=-\vec{E}_i\,,\quad i=1,2,3 F 0 i = ∂ 0 A i − ∂ i A 0 = ∂ 0 A i + ∇ i A 0 = − E i , i = 1 , 2 , 3
F 12 = ∂ 1 A 2 − ∂ 2 A 1 = − ∂ x A y + ∂ y A x = − [ ∇ × A ⃗ ] z = − B z F^{12}=\partial^1 A^2-\partial^2A^1=-\partial_x A_y+\partial_y A_x=-[\nabla\times\vec{A}]_z=-{B}_z F 12 = ∂ 1 A 2 − ∂ 2 A 1 = − ∂ x A y + ∂ y A x = − [ ∇ × A ] z = − B z
F 13 = ∂ 1 A 3 − ∂ 3 A 1 = − ∂ x A z + ∂ z A x = [ ∇ × A ⃗ ] y = B y F^{13}=\partial^1 A^3-\partial^3A^1=-\partial_x A_z+\partial_z A_x=[\nabla\times\vec{A}]_y={B}_y F 13 = ∂ 1 A 3 − ∂ 3 A 1 = − ∂ x A z + ∂ z A x = [ ∇ × A ] y = B y F 23 = ∂ 2 A 3 − ∂ 3 A 2 = − ∂ y A z + ∂ z A y = − [ ∇ × A ⃗ ] x = − B x F^{23}=\partial^2 A^3-\partial^3A^2=-\partial_y A_z+\partial_z A_y=-[\nabla\times\vec{A}]_x=-{B}_x F 23 = ∂ 2 A 3 − ∂ 3 A 2 = − ∂ y A z + ∂ z A y = − [ ∇ × A ] x = − B x Taking into account that F μ ν = − F ν μ F^{\mu\nu}=-F^{\nu\mu} F μν = − F νμ and F μ μ = 0 F^{\mu\mu}=0 F μμ = 0 we have
F μ ν = ( 0 − E x − E y − E y E x 0 − B z B y E y B z 0 − B x E z − B y B x 0 ) F^{\mu\nu}=
\left(
\begin{array}{cccc}
0&-E_x&-E_y&-E_y\\
E_x&0&-B_z&B_y\\
E_y&B_z&0&-B_x\\
E_z&-B_y&B_x&0\\
\end{array}
\right) F μν = ⎝ ⎛ 0 E x E y E z − E x 0 B z − B y − E y − B z 0 B x − E y B y − B x 0 ⎠ ⎞
Comments