This is most easily proved by using the Kronecker totally anti-symmetric symbol "\\epsilon_{ijk}" such that "\\epsilon_{123} = 1". Given two vectors "a" and "b" with the Cartesian components, respectively, "a_i" and "b_i", the Cartesian components of their vector product are given by
"\\left[ \\bm a \\times \\bm b \\right]_i = \\sum_{ij} \\epsilon_{ijk} a_j b_k"and their scalar product is "a \\cdot b = \\sum_i a_i b_i". Applying these formulas, and using the simple relation "f {\\nabla} f = \\frac12 {\\nabla} f^2", we have
"{\\nabla} \\cdot \\left [ {\\nabla} f \\times \\left ( f {\\nabla} g \\right ) \\right ] = {\\nabla} \\cdot \\left [ f {\\nabla} f \\times { \\nabla} g \\right ] = \\frac{1}{2} { \\nabla} \\cdot \\left [{ \\nabla} f^2 \\times { \\nabla} g \\right ] =""\\frac{1}{2} \\sum_i \\partial_i \\left [ {\\nabla} f^2 \\times { \\nabla} g \\right ]_i = \\frac{1}{2} \\sum_{ijk} \\partial_i \\left ( \\epsilon_{ijk} \\partial_j f^2 \\partial_k g \\right ) =""\\frac{1}{2} \\sum_{ ijk } \\epsilon_{ ijk } \\left( \\partial_i \\partial_j f^2 \\partial_k g + \\partial_j f^2 \\partial_i \\partial_k g \\right ) = 0\\, ."
The last equality is valid because is symmetric with respect to {i, j}, and is symmetric with respect to {i, k}, whereas is totally anti-symmetric.
Comments
Leave a comment