Question #177784

four equal point charge of +3.0Cμ are placed in air at the four corners of a square that is 40cm apart on a side. Find the force on any of the charge


1
Expert's answer
2021-04-06T13:54:01-0400

Let's denote the corners of the square as ABCD (starting from the upper right corner). Let's the side of the square equals 0.4 meters. Let's find the electric force on charge qAq_A (which is located at corner A) due to other charges. There are three electric forces that acts on charge qAq_A: the force FBAF_{BA} directed upward, the force FDAF_{DA} directed rightward and the force FCAF_{CA} directed along the square diagonal at an angle of 4545^{\circ}. Let's find the xx- and yy-components of this forces:


FBA,x=0,FBA,y=kqBqArBA2,F_{BA,x}=0, F_{BA,y}=\dfrac{kq_Bq_A}{r_{BA}^2},FBA,y=9109 Nm2C2(3106 C)2(0.4 m)2=0.51 N,F_{BA,y}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(3\cdot10^{-6}\ C)^2}{(0.4\ m)^2}=0.51\ N,FDA,x=kqDqArDA2,FDA,y=0,F_{DA,x}=\dfrac{kq_Dq_A}{r_{DA}^2}, F_{DA,y}=0,FDA,x=9109 Nm2C2(3106 C)2(0.4 m)2=0.51 N,F_{DA,x}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(3\cdot10^{-6}\ C)^2}{(0.4\ m)^2}=0.51\ N,FCA,x=kqCqArCA2cosθ,F_{CA,x}=\dfrac{kq_Cq_A}{r_{CA}^2}cos\theta,FCA,x=9109 Nm2C2(3106 C)2(20.4 m)2cos45=0.18 N,F_{CA,x}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(3\cdot10^{-6}\ C)^2}{(\sqrt{2}\cdot0.4\ m)^2}\cdot cos45^{\circ}=0.18\ N,FCA,y=kqCqArCA2sinθ,F_{CA,y}=\dfrac{kq_Cq_A}{r_{CA}^2}sin\theta,FCA,y=9109 Nm2C2(3106 C)2(20.4 m)2sin45=0.18 N.F_{CA,y}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(3\cdot10^{-6}\ C)^2}{(\sqrt{2}\cdot0.4\ m)^2}\cdot sin45^{\circ}=0.18\ N.

Then, we can write xx- and yy-components of resulting electric force that act on charge qAq_A:


Fx=FDA,x+FCA,x=0.51 N+0.18 N=0.69 N,F_x=F_{DA,x}+F_{CA,x}=0.51\ N+0.18\ N=0.69\ N,Fy=FBA,y+FCA,y=0.51 N+0.18 N=0.69 N.F_y=F_{BA,y}+F_{CA,y}=0.51\ N+0.18\ N=0.69\ N.

Finally, we can find the resulting electric force that act on charge qAq_A from the Pythagorean theorem:


F=Fx2+Fy2=(0.69 N)2+(0.69 N)2=0.97 N.F=\sqrt{F_x^2+F_y^2}=\sqrt{(0.69\ N)^2+(0.69\ N)^2}=0.97\ N.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS