1) For example, consider the following incident wave with incident angle "\\alpha", refracted with angle "\\beta" and transmitted with angle "\\gamma":
"p_i=p_0e^{ik_1\\vec{r}}=p_0\\text{exp}[ik_1(x\\text{cos}(90^\\circ-\\alpha)+y\\text{cos}\\alpha]," reflected wave:
"p_r=p_0R\\text{exp}[ik_1(x\\text{sin}\\beta+y\\text{sin}\\beta]" and transmitted wave
"p_t=p_0D\\text{exp}[ik_2(x\\text{sin}\\gamma+y\\text{cos}\\gamma]," where "k_1,\\space k_2" - wavenumbers for the mediums.
2) The boundary conditions (y=0):
"p_0\\text{exp}(ik_1x\\text{sin}\\alpha)+Rp_0\\text{exp}(ik_1x\\text{sin}\\beta)=Dp_0\\text{exp}(ik_2x\\text{sin}\\gamma)." According to Snellius law:
"k_1\\text{sin}\\alpha=k_1\\text{sin}\\beta=k_2\\text{sin}\\gamma," then
"D=R+1." The boundary conditions at x=0:
"\\frac{\\text{cos}\\alpha}{c_1\\rho_1}-R\\frac{\\text{cos}\\beta}{c_1\\rho_1}=D\\frac{\\text{cos}\\gamma}{c_2\\rho_2}."
3) The reflection and transmission coefficients are
"R=\\frac{Z_1-Z_2}{Z_1+Z_2},"
"D=\\frac{2Z_1}{Z_1+Z_2}."
Comments
Leave a comment