Question #89126
A transverse wave is incident on a boundary separating two media of acoustic impdances Z1 and Z2.
(a) Write down the equations of incident, reflected and transmitted waves. .
(b) Write down the boundary conditions.
(c) Obtain expressions for reflection and
transmission coefficients
1
Expert's answer
2019-05-17T11:19:19-0400

1) For example, consider the following incident wave with incident angle α\alpha, refracted with angle β\beta and transmitted with angle γ\gamma:


pi=p0eik1r=p0exp[ik1(xcos(90α)+ycosα],p_i=p_0e^{ik_1\vec{r}}=p_0\text{exp}[ik_1(x\text{cos}(90^\circ-\alpha)+y\text{cos}\alpha],

reflected wave:


pr=p0Rexp[ik1(xsinβ+ysinβ]p_r=p_0R\text{exp}[ik_1(x\text{sin}\beta+y\text{sin}\beta]

and transmitted wave


pt=p0Dexp[ik2(xsinγ+ycosγ],p_t=p_0D\text{exp}[ik_2(x\text{sin}\gamma+y\text{cos}\gamma],

where k1, k2k_1,\space k_2 - wavenumbers for the mediums.

2) The boundary conditions (y=0):


p0exp(ik1xsinα)+Rp0exp(ik1xsinβ)=Dp0exp(ik2xsinγ).p_0\text{exp}(ik_1x\text{sin}\alpha)+Rp_0\text{exp}(ik_1x\text{sin}\beta)=Dp_0\text{exp}(ik_2x\text{sin}\gamma).

According to Snellius law:


k1sinα=k1sinβ=k2sinγ,k_1\text{sin}\alpha=k_1\text{sin}\beta=k_2\text{sin}\gamma,

then


D=R+1.D=R+1.

The boundary conditions at x=0:


cosαc1ρ1Rcosβc1ρ1=Dcosγc2ρ2.\frac{\text{cos}\alpha}{c_1\rho_1}-R\frac{\text{cos}\beta}{c_1\rho_1}=D\frac{\text{cos}\gamma}{c_2\rho_2}.

3) The reflection and transmission coefficients are


R=Z1Z2Z1+Z2,R=\frac{Z_1-Z_2}{Z_1+Z_2},

D=2Z1Z1+Z2.D=\frac{2Z_1}{Z_1+Z_2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS