Find the magnitude of the electrostatic force of attraction between an iron nucleus, Fe and its innermost orbiting electron if the distance of separation between them is 1.50 x 10^-12 m. Determine also the orbital speed of this electron.
Force
F=kq1q2r2F=\frac{kq_1q_2}{r^2}F=r2kq1q2
F=kze2r2F=\frac{kze^2}{r^2}F=r2kze2
F=9×109×26×1.62×10−381.502×10−24F=\frac{9\times10^9\times26\times1.6^2\times10^{-38}}{1.50^2\times10^{-24}}F=1.502×10−249×109×26×1.62×10−38
F=2.67×10−3NF=2.67\times10^{-3}NF=2.67×10−3N
mv2r=kze2r2\frac{mv^2}{r}=\frac{kze^2}{r^2}rmv2=r2kze2
v=kze2rmv=\sqrt\frac{{kze^2}}{rm}v=rmkze2
v=9×109×26×(1.6×10−19)21.50×10−12×9.1×10−31v=\sqrt\frac{{9\times10^9\times26\times(1.6\times10^{-19})^2}}{1.50\times10^{-12}\times9.1\times10^{-31}}v=1.50×10−12×9.1×10−319×109×26×(1.6×10−19)2
v=6.62×107m/secv=6.62\times10^{7} m/secv=6.62×107m/sec
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments