Question #301720

Calculate the work done by a force F vector = (x-y) i^ +xy j^


in moving a particle


counterclockwise along the circle x² +y² =4 from the point (2,0) to the point


(0, -2).

1
Expert's answer
2022-02-24T09:05:18-0500

W=CFdl=CFxdx+Fydy,W=\int_C\vec Fd\vec l=\int_CF_xdx+F_ydy,

Fx=xy, Fy=xy,F_x=x-y,~F_y=xy,

x=2cost, y=2sint,x=2\cos t,~y=2\sin t,

dx=2sint, dy=2cost,dx=-2\sin t,~dy=2\cos t,

t1=0, t2=3π2,t_1=0,~t_2=\frac{3\pi}2,

W=03π2((2cost2sint)(2sint)+(2sin2t)(2cost))dt=23+3π.W=\int_0^{\frac{3\pi}2}((2\cos t-2\sin t)(-2\sin t)+(2\sin 2t)(2\cos t))dt=\frac 23+3\pi.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS