Calculate the work done by a force F vector = (x-y) i^ +xy j^
in moving a particle
counterclockwise along the circle x² +y² =4 from the point (2,0) to the point
(0, -2).
W=∫CF⃗dl⃗=∫CFxdx+Fydy,W=\int_C\vec Fd\vec l=\int_CF_xdx+F_ydy,W=∫CFdl=∫CFxdx+Fydy,
Fx=x−y, Fy=xy,F_x=x-y,~F_y=xy,Fx=x−y, Fy=xy,
x=2cost, y=2sint,x=2\cos t,~y=2\sin t,x=2cost, y=2sint,
dx=−2sint, dy=2cost,dx=-2\sin t,~dy=2\cos t,dx=−2sint, dy=2cost,
t1=0, t2=3π2,t_1=0,~t_2=\frac{3\pi}2,t1=0, t2=23π,
W=∫03π2((2cost−2sint)(−2sint)+(2sin2t)(2cost))dt=23+3π.W=\int_0^{\frac{3\pi}2}((2\cos t-2\sin t)(-2\sin t)+(2\sin 2t)(2\cos t))dt=\frac 23+3\pi.W=∫023π((2cost−2sint)(−2sint)+(2sin2t)(2cost))dt=32+3π.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments