Question #293840

At the three consecutive corners of a square, 10 cm on each side, are point charges 4 x 10-6 C, 8 x 10-6 C, and 12 x 10-6 C, respectively. Find the EP at the fourth corner of the square.



1
Expert's answer
2022-02-06T14:32:01-0500

q1=4×106Cq2=8×106Cq3=12×106Cq_1=4\times10^{-6}C\\q_2=8\times10^{-6}C\\q_3=12\times10^{-6}C

a=10cm=0.1ma=10cm=0.1m

Electric field due to q1q_1 Charge


E1=kq1r2=9×109×4×1060.12=36×105N/CE_1=\frac{kq_1}{r^2}=\frac{9\times10^{9}\times4\times10^{-6}}{0.1^2}=36\times10^{5}N/C

Electric field due to q2q_2 charge


E2=kq2r2=9×109×8×106(0.1×2)2=36×105N/CE_2=\frac{kq_2}{r^2}=\frac{9\times10^{9}\times8\times10^{-6}}{(0.1\times\sqrt{2})^2}=36\times10^{5}N/C

Electric field due to q3q_3 ccharge

E3=kq3r2=9×109×12×106(0.12)=108×105N/CE_3=\frac{kq_3}{r^2}=\frac{9\times10^{9}\times12\times10^{-6}}{(0.1^2)}=108\times10^{5}N/C

Net electric field

E=E12+E32+2E1E3cosθE'=\sqrt{E_1^2+E_3^2+2E_1E_3cos\theta}


E=362+1082+2×36×108×cos90°=(362+1082)×1010E'=\sqrt{36^2+108^2+2\times36\times108\times cos90°}=\sqrt{(36^2+108^2)\times10^{10}}

E=1.296×1014=113.48×105N/CE'=\sqrt{1.296\times10^{14}}=113.48\times10^5N/C

Net electric field at point P

Enet=E+E2E_{net}=E'+E_2


Enet=36×105+113.48×105=149.48×105N/CE_{net}=36\times10^{5}+113.48\times10^{5}=149.48\times10^5N/C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS