q 1 = 4 × 1 0 − 6 C q 2 = 8 × 1 0 − 6 C q 3 = 12 × 1 0 − 6 C q_1=4\times10^{-6}C\\q_2=8\times10^{-6}C\\q_3=12\times10^{-6}C q 1 = 4 × 1 0 − 6 C q 2 = 8 × 1 0 − 6 C q 3 = 12 × 1 0 − 6 C
a = 10 c m = 0.1 m a=10cm=0.1m a = 10 c m = 0.1 m
Electric field due to q 1 q_1 q 1 Charge
E 1 = k q 1 r 2 = 9 × 1 0 9 × 4 × 1 0 − 6 0. 1 2 = 36 × 1 0 5 N / C E_1=\frac{kq_1}{r^2}=\frac{9\times10^{9}\times4\times10^{-6}}{0.1^2}=36\times10^{5}N/C E 1 = r 2 k q 1 = 0. 1 2 9 × 1 0 9 × 4 × 1 0 − 6 = 36 × 1 0 5 N / C Electric field due to q 2 q_2 q 2 charge
E 2 = k q 2 r 2 = 9 × 1 0 9 × 8 × 1 0 − 6 ( 0.1 × 2 ) 2 = 36 × 1 0 5 N / C E_2=\frac{kq_2}{r^2}=\frac{9\times10^{9}\times8\times10^{-6}}{(0.1\times\sqrt{2})^2}=36\times10^{5}N/C E 2 = r 2 k q 2 = ( 0.1 × 2 ) 2 9 × 1 0 9 × 8 × 1 0 − 6 = 36 × 1 0 5 N / C Electric field due to q 3 q_3 q 3 ccharge
E 3 = k q 3 r 2 = 9 × 1 0 9 × 12 × 1 0 − 6 ( 0. 1 2 ) = 108 × 1 0 5 N / C E_3=\frac{kq_3}{r^2}=\frac{9\times10^{9}\times12\times10^{-6}}{(0.1^2)}=108\times10^{5}N/C E 3 = r 2 k q 3 = ( 0. 1 2 ) 9 × 1 0 9 × 12 × 1 0 − 6 = 108 × 1 0 5 N / C Net electric field
E ′ = E 1 2 + E 3 2 + 2 E 1 E 3 c o s θ E'=\sqrt{E_1^2+E_3^2+2E_1E_3cos\theta} E ′ = E 1 2 + E 3 2 + 2 E 1 E 3 cos θ
E ′ = 3 6 2 + 10 8 2 + 2 × 36 × 108 × c o s 90 ° = ( 3 6 2 + 10 8 2 ) × 1 0 10 E'=\sqrt{36^2+108^2+2\times36\times108\times cos90°}=\sqrt{(36^2+108^2)\times10^{10}} E ′ = 3 6 2 + 10 8 2 + 2 × 36 × 108 × cos 90° = ( 3 6 2 + 10 8 2 ) × 1 0 10
E ′ = 1.296 × 1 0 14 = 113.48 × 1 0 5 N / C E'=\sqrt{1.296\times10^{14}}=113.48\times10^5N/C E ′ = 1.296 × 1 0 14 = 113.48 × 1 0 5 N / C Net electric field at point P
E n e t = E ′ + E 2 E_{net}=E'+E_2 E n e t = E ′ + E 2
E n e t = 36 × 1 0 5 + 113.48 × 1 0 5 = 149.48 × 1 0 5 N / C E_{net}=36\times10^{5}+113.48\times10^{5}=149.48\times10^5N/C E n e t = 36 × 1 0 5 + 113.48 × 1 0 5 = 149.48 × 1 0 5 N / C
Comments