The coordinate-free form of electric field at an arbitrary point P (a distance r away). of an electric dipole located at the origin is E(r)= 1 4 pi epsilon 0 [ 3(p.r) r^ 3 r- p r^ 3 ] Convert this into an expression in spherical coordinales.
E(r)=14πε01r3(3(p⃗⋅r⃗)r⃗−p⃗),E(r)=\frac1{4\pi\varepsilon_0}\frac 1{r^3}(3(\vec p \cdot\vec r)\vec r-\vec p),E(r)=4πε01r31(3(p⋅r)r−p),
E(r,θ)=p4πε0r3(2cosθr⃗+sinθθ⃗).E(r,\theta)=\frac p{4\pi\varepsilon_0r^3}(2\cos\theta \vec r+\sin\theta\vec\theta).E(r,θ)=4πε0r3p(2cosθr+sinθθ).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments