Answer to Question #289895 in Electricity and Magnetism for shebe

Question #289895

Show that, when SI units for μ0 and ϵ0 are entered, the units given by the right-hand side of the equation in the problem above are m/s.


1
Expert's answer
2022-01-24T11:18:47-0500

We know that

c=1μ0ϵ0(1)c=\frac{1}{\sqrt{\mu_0\epsilon_0}}\rightarrow(1)

RHS

Unit of

μ0=T×mA\mu_0=\frac{T\times m}{A}

ϵ=c2N×m2\epsilon=\frac{c^2}{N\times m^2}

A=csecA=\frac{c}{sec}

μ0=T×sec×mc\mu_0=\frac{T\times sec\times m}{c}

Equation (1) put RHS value

c=1T×m×secc×c2N×m2c=\frac{1}{\sqrt{\frac{T\times m \times sec}{c} \times{\frac {c^2}{N\times m^2}}}}

c=1T×sec×cN×m(2)c=\frac{1}{\sqrt{\frac{T \times sec\times c}{N\times m}}}\rightarrow(2)

Now We know that

F=qvBF=qvB

v=FqBv=\frac{F}{qB}

Unit

v=Nc×T(3)v=\frac{N}{c\times T}\rightarrow({3})

Equation (2) and (3) we can written as

c=11v×secmc=\frac{1}{\sqrt{\frac{1}{v}\times \frac{sec}{m}}}

1v=secm\frac{1}{v}=\frac{sec}{m}

c=11v2c=\frac{1}{\sqrt{\frac{1}{v^2}}}

c=vc=v

Unit of c=v =m/sec

LHS=RHS


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment