prove divD= volume charge density using gauss law .Also find the capacitance of two concentric spherical metal shells radii a and b.
∮SD⃗dS=∭VdivD⃗dV,\oint_S\vec D dS=\iiint_V\text{div}\vec Dd V,∮SDdS=∭VdivDdV,
Q=∫VρdV,Q=\int_V\rho dV,Q=∫VρdV,
∫VdivD⃗dV=∫VρdV, ⟹ \smallint_V\text{div}\vec DdV=\int_V\rho dV,\implies∫VdivDdV=∫VρdV,⟹
divD⃗=ρ.\text{div}\vec D=\rho.divD=ρ.
U=U2−U1=kQ(1R1−1R2),U=U_2-U_1=kQ(\frac 1{R_1}-\frac 1{R_2}),U=U2−U1=kQ(R11−R21),
C=QU=R1R2k(R2−R1).C=\frac QU=\frac{R_1R_2}{k(R_2-R_1)}.C=UQ=k(R2−R1)R1R2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment