2. A high-speed electron having a mass of 9 Γ 10β31ππ is moving at right angle to 0.75-T magnetic field and has a speed of 2.5 Γ 107π/π . What is the size of the force acts on the high-speed electron? What is the magnitude of acceleration of the particle?
B=0.75β βTv=2.5Γ107β βm/sm=9Γ10β31β βkgq=e=1.6Γ10β19β βCΞΈ=90Β°B=0.75 \;T \\ v=2.5 \times 10^7 \;m/s \\ m = 9 \times 10^{-31} \;kg \\ q = e = 1.6 \times 10^{-19} \;C \\ ΞΈ=90Β°B=0.75Tv=2.5Γ107m/sm=9Γ10β31kgq=e=1.6Γ10β19CΞΈ=90Β°
Magnetic force
F=qvBsinΞΈF=1.6Γ10β19Γ2.5Γ107Γ0.75Γsin90Β°F=3Γ10β12β βNF = qvBsinΞΈ \\ F = 1.6 \times 10^{-19} \times 2.5 \times 10^7 \times 0.75 \times sin 90Β° \\ F = 3 \times 10^{-12} \;NF=qvBsinΞΈF=1.6Γ10β19Γ2.5Γ107Γ0.75Γsin90Β°F=3Γ10β12N
Acceleration
a=Fma=3Γ10β129Γ10β31a=0.333Γ1019=3.33Γ1018β βm/s2a = \frac{F}{m} \\ a = \frac{3 \times 10^{-12}}{9 \times 10^{-31}} \\ a = 0.333 \times 10^{19} = 3.33 \times 10^{18} \;m/s^2a=mFβa=9Γ10β313Γ10β12βa=0.333Γ1019=3.33Γ1018m/s2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments