in a region of space has constant charge density, p. Assume that the region is infinite in the x-y plane and of height, d. Determine the electric field inside and outside the charged region.
Inside.
∮EdA=qinϵ0,\oint EdA=\frac {q_{in}}{\epsilon _0},∮EdA=ϵ0qin,
dq=ρdV=ρxl2dx,dq=\rho dV=\rho xl^2dx,dq=ρdV=ρxl2dx,
q=∫dq=ρl2d28,q=\int dq=\frac{\rho l^2d^2}8,q=∫dq=8ρl2d2,
E=ρd28ϵ0.E=\frac{\rho d^2}{8\epsilon _0}.E=8ϵ0ρd2.
Outside.
∮EdA=qinϵ0,\oint EdA=\frac{q_{in}}{\epsilon_0},∮EdA=ϵ0qin,
q=∫dq=ρl2a22,q=\int dq=\frac{\rho l^2a^2}{2},q=∫dq=2ρl2a2,
E=ρa22ϵ0.E=\frac{\rho a^2}{2\epsilon_0}.E=2ϵ0ρa2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments