Question #251943

a) Calculate the potential energy of a charge +6nC placed at 0.07m from a charge +76 x10-6C. If the same charge if at 0.07m from a charge -88 x10-6C, find its potential energy.

b) Find the distance from a charge -8 x10-6C to a charge -4 x10-9C if there is a potential energy of 9.5kJ between them. Find the initial force on charge -4 x10-9C.



1
Expert's answer
2021-10-18T11:13:37-0400

a) The potential energy of two point charges is given as follows:


W=kq1q2rW = k\dfrac{q_1q_2}{r}

where q1,q2q_1,q_2 are the charges, rr is the distance between them, k=9×109Nm2/C2k = 9\times 10^9 Nm^2/C^2 is the Coulomb constant. Substituting the numbers from the task, obtain:

1.


W=9×1096×10976×1060.070.06JW =9\times 10^9\cdot \dfrac{6\times10^{-9}\cdot 76\times10^{-6}}{0.07} \approx 0.06J

2.


W=9×1096×109(88)×1060.070.07JW =9\times 10^9\cdot \dfrac{6\times10^{-9}\cdot (-88)\times10^{-6}}{0.07} \approx -0.07J


b) Expressing the distance from the first formula, find:


r=kq1q2Wr = \dfrac{kq_1q_2}{W}

Substituting the numbers, get:


r=9×109(8)×106(4)×1099.8×1032.9×108mr = \dfrac{9\times 10^9\cdot (-8)\times 10^{-6}\cdot (-4)\times 10^{-9}}{9.8\times 10^3} \approx 2.9\times 10^{-8}m

The force is given by the Coulomb's law:


F=kq1q2r2=Wr=W2kq1q2F=(9.8×103)29×109(8)×106(4)×1093.3×1011NF = k\dfrac{q_1q_2}{r^2} = \dfrac{W}{r} = \dfrac{W^2}{kq_1q_2}\\ F = \dfrac{(9.8\times 10^3)^2}{9\times 10^9\cdot (-8)\times 10^{-6}\cdot (-4)\times 10^{-9}} \approx 3.3\times 10^{11}N

Answer. a) 0.06J and -0.07J. b) 2.9×108m2.9\times 10^{-8}m and 3.3×1011N3.3\times 10^{11}N.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS