Question #251930

Two charges (+3µC on the left of the -5µC) are separated by a distance of 5um on a horizontal line. Point P is located 10µm above the 3µC charge.


a) Draw a sketch of the setting discussed in the question above. Make sure to label all points discussed. (2marks)


b) Calculate the field at point P (3marks)


c) Calculate the potential at point P 

(1 mark)


1
Expert's answer
2021-10-18T11:13:48-0400

(a) Let q1=+3 μCq_1=+3\ \mu C, q2=5 μCq_2 = -5\ \mu C. Let the distance between charges q1q_1 and q2q_2 be r12=5 μmr_{12}=5\ \mu m, the distance from the charge q1q_1 to the point P above it be r1P=10 μmr_{1P}=10\ \mu m. Let's draw a sketch:



(b) The electric field due to point charge q1q_1 at point P directed upward (away from the charge q1q_1), the electric field due to point charge q2q_2 at point P directed toward charge q2q_2.

Let’s first find the magnitudes of the electric fields E1E_1 and E2E_2:


E1=kq1r1P2=9.0109 Nm2C23106 C(10106 m)2=2.71014 NC,E_1=\dfrac{k|q_1|}{r_{1P}^2}=\dfrac{9.0\cdot10^{9}\ \dfrac{N\cdot m^2}{C^2}\cdot|3\cdot10^{-6}\ C|}{(10\cdot10^{-6}\ m)^2}=2.7\cdot10^{14}\ \dfrac{N}{C},E2=kq2r2P2=9.0109 Nm2C25106 C(10106 m)2+(5106 m)2=4.0109 NC.E_2=\dfrac{k|q_2|}{r_{2P}^2}=\dfrac{9.0\cdot10^{9}\ \dfrac{N\cdot m^2}{C^2}\cdot|-5\cdot10^{-6}\ C|}{\sqrt{(10\cdot10^{-6}\ m)^2+(5\cdot10^{-6}\ m)^2}}=4.0\cdot10^{9}\ \dfrac{N}{C}.

Let’s find projections of the fields E1E_1 and E2E_2 on axis xx- and yy:


E1x=0,E1y=E1=2.71014 NC,E_{1x}=0, E_{1y}=E_1=2.7\cdot10^{14}\ \dfrac{N}{C},E2x=E2cosθ=E2r1Pr2P,E_{2x}=E_2cos\theta=E_2\dfrac{r_{1P}}{r_{2P}},E2x=4.0109 NC10106 m(10106 m)2+(5106 m)2=3.6109 NC,E_{2x}=4.0\cdot10^{9}\ \dfrac{N}{C}\cdot\dfrac{10\cdot10^{-6}\ m}{\sqrt{(10\cdot10^{-6}\ m)^2+(5\cdot10^{-6}\ m)^2}}=3.6\cdot10^9\ \dfrac{N}{C},E2y=E2sinθ=E2r12r2P,E_{2y}=E_2sin\theta=E_2\dfrac{r_{12}}{r_{2P}},E2y=4.0109 NC5106 m(10106 m)2+(5106 m)2=1.78109 NC.E_{2y}=4.0\cdot10^{9}\ \dfrac{N}{C}\cdot\dfrac{5\cdot10^{-6}\ m}{\sqrt{(10\cdot10^{-6}\ m)^2+(5\cdot10^{-6}\ m)^2}}=1.78\cdot10^9\ \dfrac{N}{C}.

Then, we can find xx- and yy-components of the net electric field at point P:


Ex=E2x=3.6109 NC,E_x=E_{2x}=3.6\cdot10^9\ \dfrac{N}{C},Ey=E1yE2y=2.71014 NC1.78109 NC=2.691014 NC.E_y=E_{1y}-E_{2y}=2.7\cdot10^{14}\ \dfrac{N}{C}-1.78\cdot10^9\ \dfrac{N}{C}=2.69\cdot10^{14}\ \dfrac{N}{C}.

We can find the net electric field at point P from the Pythagorean theorem:

Enet=Ex2+Ey2=(3.6109 NC)2+(2.691014 NC)2=2.691014 NC.E_{net}=\sqrt{E_x^2+E_y^2}=\sqrt{(3.6\cdot10^9\ \dfrac{N}{C})^2+(2.69\cdot10^{14}\ \dfrac{N}{C})^2}=2.69\cdot10^{14}\ \dfrac{N}{C}.

We can find the direction of the net electric field from the geometry:


θ=tan1(EyEx)=tan1(2.691014 NC3.6109 NC)=89.9.\theta=tan^{-1}(\dfrac{E_y}{E_x})=tan^{-1}(\dfrac{2.69\cdot10^{14}\ \dfrac{N}{C}}{3.6\cdot10^9\ \dfrac{N}{C}})=89.9^{\circ}.

(c) We can find the potential at point P as follows:


V=V1+V2=kq1r1P+kq2r2P,V=V_1+V_2=\dfrac{kq_1}{r_{1P}}+\dfrac{kq_2}{r_{2P}},V=9.0109 Nm2C23106 C10106 m+9.0109 Nm2C2(5106 C)(10106 m)2+(5106 m)2,V=\dfrac{9.0\cdot10^{9}\ \dfrac{N\cdot m^2}{C^2}\cdot3\cdot10^{-6}\ C}{10\cdot10^{-6}\ m}+\dfrac{9.0\cdot10^{9}\ \dfrac{N\cdot m^2}{C^2}\cdot(-5\cdot10^{-6}\ C)}{\sqrt{(10\cdot10^{-6}\ m)^2+(5\cdot10^{-6}\ m)^2}},V=1.32109 V.V=-1.32\cdot10^{9}\ V.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS