To find electric field inside a charged solid sphere using Gauss's law.
Consider a charged sphere of radius R and uniform charge density ρ, q is the charge on sphere where ρ = q V = q 4 3 π R 3 ρ=\frac{q}{V}=\frac{q}{\frac{4}{3} \pi R^3} ρ = V q = 3 4 π R 3 q
Consider a point P at a distance r inside the sphere.
Now draw a Gaussian surface with radius r<R
Using Gauss’s theorem
Φ = ∮ E ⃗ ⋅ d s ⃗ = q e n c l o s e d ε 0 q e n c l o s e d = ρ V e n c l o s e d = ( 4 3 π R 3 ) ( 4 3 π r 3 ) q e n c l o s e d = q ( r 3 R 3 ) ∮ E ⃗ ⋅ d s ⃗ = q r 3 ε 0 R 3 E 4 π r 2 = q r 3 ε 0 R 3 E = 1 4 π ε 0 q r R 3 Φ = \oint \vec{E}\cdot \vec{ds} = \frac{q_{enclosed}}{ε_0} \\
q_{enclosed} = ρV_{enclosed} = (\frac{4}{3} \pi R^3)(\frac{4}{3} \pi r^3) \\
q_{enclosed} = q(\frac{r^3}{R^3}) \\
\oint \vec{E}\cdot \vec{ds} = \frac{qr^3}{ε_0R^3} \\
E4 \pi r^2 = \frac{qr^3}{ε_0R^3} \\
E= \frac{1}{4 \pi ε_0} \frac{qr}{R^3} Φ = ∮ E ⋅ d s = ε 0 q e n c l ose d q e n c l ose d = ρ V e n c l ose d = ( 3 4 π R 3 ) ( 3 4 π r 3 ) q e n c l ose d = q ( R 3 r 3 ) ∮ E ⋅ d s = ε 0 R 3 q r 3 E 4 π r 2 = ε 0 R 3 q r 3 E = 4 π ε 0 1 R 3 q r
In terms of charge density
E = 1 4 π ε 0 ( ρ 4 3 π R 3 ) r R 3 E = ρ r 3 ε 0 E= \frac{1}{4 \pi ε_0} \frac{(ρ \frac{4}{3} \pi R^3)r}{R^3} \\
E = \frac{ρr}{3ε_0 } E = 4 π ε 0 1 R 3 ( ρ 3 4 π R 3 ) r E = 3 ε 0 ρ r
Comments