Question #238814


2. Using Levi-Civita symbol, prove (A~ ×B~ )·C~ = (B~ ×C~ )·A~ = (C~ ×A~)·B~


1
Expert's answer
2021-09-18T14:58:55-0400
(A×B)C=ϵijkAjBkCi=ϵjkiAjBkCi=ϵjkiBkCiAj=(B×C)A({\bf A}\times{\bf B})\cdot{\bf C}=\epsilon_{ijk}A_jB_kC_i=\epsilon_{jki}A_jB_kC_i\\ =\epsilon_{jki}B_kC_iA_j=({\bf B}\times{\bf C})\cdot{\bf A}

(A×B)C=ϵijkAjBkCi=ϵkijAjBkCi=ϵkijCiAjBk=(C×A)B({\bf A}\times{\bf B})\cdot{\bf C}=\epsilon_{ijk}A_jB_kC_i=\epsilon_{kij}A_jB_kC_i\\ =\epsilon_{kij}C_iA_jB_k=({\bf C}\times{\bf A})\cdot{\bf B}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS