E1+E2=E=0,E_1+E_2=E=0,E1+E2=E=0,
E1=−E2,E_1=-E_2,E1=−E2,
q1>0, q2<0,q_1>0,~q_2<0,q1>0, q2<0,
kq1x2=−kq2(r−x)2,\frac{kq_1}{x^2}=-\frac{kq_2}{(r-x)^2},x2kq1=−(r−x)2kq2,
−q1q2=xr−x,\sqrt{-\frac{q_1}{q_2}}=\frac x{r-x},−q2q1=r−xx, ⟹ \implies⟹
x=r−q1q21+−q1q2=rq1q1+−q2.x=\frac{r\sqrt{-\frac{q_1}{q_2}}}{1+\sqrt{-\frac{q_1}{q_2}}}=\frac{r\sqrt{q_1}}{\sqrt{q_1}+\sqrt{-q_2}}.x=1+−q2q1r−q2q1=q1+−q2rq1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments