Question #231739

A 10 F capacitor is connected through a 1 M resistor to a constant potential difference of 100

V. Compute (a) the charge at time 5s (b) the current in the same instant (c) the time require for the

charge to increase from zero to 5×10-04 C (d) the final charge in the circuit (e) the relaxation time

and half-life of the circuit. (f) the time require for the charge to increase from 5×10-04 C to 7×10-04

C.


1
Expert's answer
2021-09-01T11:20:24-0400

c=10  μFR=1  MΩVb=100  Vc= 10\; \mu F \\ R=1 \; M \Omega \\ V_b= 100 \;V

a)

Q=cVb[1etRc]t=5  sQ=10×106×100[1e510]Q=3.93×104  CQ=cV_b[1 - e^{-\frac{t}{Rc}}] \\ t= 5 \;s \\ Q= 10 \times 10^{-6} \times 100 [1 -e^{-\frac{5}{10}}] \\ Q= 3.93 \times 10^{-4} \;C

b)

Carging current at t= 5 s

I=VbRetRC=3.93×1045=7.86×105  AI= \frac{V_b}{R}e^{-\frac{t}{RC} } \\ = \frac{3.93 \times 10^{-4}}{5} \\ = 7.86 \times 10^{-5} \;A

c)

Q(t)=5×104  C5×104=10×106×100[1et10]0.5=[1et10]et10=0.5t10=ln(0.5)t=6.93  sQ(t) = 5 \times 10^{-4} \;C \\ 5 \times 10^{-4}= 10 \times 10^{-6} \times 100 [1 -e^{-\frac{t}{10} }] \\ 0.5 = [1 -e^{-\frac{t}{10} }] \\ e^{-\frac{t}{10}} = 0.5 \\ -\frac{t}{10} = ln(0.5) \\ t=6.93 \;s

d)

Q=cVb=10×106×100Q=103  CQ=cV_b = 10 \times 10^{-6} \times 100 \\ Q=10^{-3} \;C

e) The relaxation time:

τ=RC=106×10×106=10  sτ = RC = 10^6 \times 10 \times 10^{-6} \\ = 10 \;s

Half-life of the circuit:

V=Vb[1etRc]At  t=t1/2  V=Vb20.5=[1et1/210]t1/2=6.93  sV=V_b[1 – e^{-\frac{t}{Rc}}] \\ At\;t= t_{1/2} \; \\ V = \frac{V_b}{2} \\ 0.5 = [1 – e^{-\frac{t_{1/2}}{10}}] \\ t_{1/2} = 6.93 \;s

f)

Q=cVb[1etRc]7×104=10×104[1et110]t1=12.039  s5×104=10×104[1et210]t2=6.93  sQ=cV_b[1 - e^{-\frac{t}{Rc}}] \\ 7 \times 10^{-4} = 10 \times 10^{-4}[1 -e^{-\frac{t_1}{10}}] \\ t_1= 12.039 \;s \\ 5 \times 10^{-4}= 10 \times 10^{-4}[1- e^{-\frac{t_2}{10}}] \\ t_2= 6.93 \;s

The time require for the charge to increase from 5×104  C5 \times 10^{-4} \; C to 7×104  C7 \times 10^{-4} \; C :

Δt=t1t2=5.11  sΔt=t_1-t_2 = 5.11 \;s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS