Maxwell’s equations in free space are given by
∇⋅E=0∇⋅B=0∇×E=−c1∂t∂B∇×B=c1∂t∂EThe last two equations give
∇×∂t∂B=c1∂t2∂2E
−c∇×∇×E=c1∂t2∂2Eor
∇×∇×E=−c21∂t2∂2EUsing identity
∇×∇×E=∇(∇⋅E)−∇2Eand first Maxwell’s equation, we obtain
∇×∇×E=−∇2E=−c21∂t2∂2EFinally
∇2E−c21∂t2∂2E=0Also we have
∇2Ey−c21∂t2∂2Ey=0
Comments