Question #230788

Using Maxwell’s equations in free space, derive the wave equation for the

y-component of the electric field vector.


1
Expert's answer
2021-08-29T16:55:15-0400

Maxwell’s equations in free space are given by

E=0B=0\nabla\cdot {\bf E}=0\\ \nabla\cdot {\bf B}=0×E=1cBt\nabla\times {\bf E}=-\frac{1}{c}\frac{\partial {\bf B}}{\partial t}×B=1cEt\nabla\times {\bf B}=\frac{1}{c}\frac{\partial {\bf E}}{\partial t}

The last two equations give

×Bt=1c2Et2\nabla\times \frac{\partial{\bf B}}{\partial t}=\frac{1}{c}\frac{\partial^2 {\bf E}}{\partial t^2}

c××E=1c2Et2-c\nabla\times \nabla\times {\bf E}=\frac{1}{c}\frac{\partial^2 {\bf E}}{\partial t^2}

or


××E=1c22Et2\nabla\times \nabla\times {\bf E}=-\frac{1}{c^2}\frac{\partial^2 {\bf E}}{\partial t^2}

Using identity

××E=(E)2E\nabla\times \nabla\times {\bf E}=\nabla(\nabla\cdot {\bf E})-\nabla^2{\bf E}

and first Maxwell’s equation, we obtain

××E=2E=1c22Et2\nabla\times \nabla\times {\bf E}=-\nabla^2{\bf E}=-\frac{1}{c^2}\frac{\partial^2 {\bf E}}{\partial t^2}

Finally

2E1c22Et2=0\nabla^2{\bf E}-\frac{1}{c^2}\frac{\partial^2 {\bf E}}{\partial t^2}=0

Also we have

2Ey1c22Eyt2=0\nabla^2E_y-\frac{1}{c^2}\frac{\partial^2 E_y}{\partial t^2}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS