Question #213594

A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential 

at infinity as zero, the potential at r =b < a is


1
Expert's answer
2021-07-12T16:23:06-0400

Gauss law

E.A=Qϵ0\smallint E.A=\frac{Q}{\epsilon_0}

r=b<a


E.(4πb2)=ρ4πb23ϵ0E.(4\pi b^2)=\frac{\rho\frac{4\pi b^2}{3}}{\epsilon_0}

ρ=Q4πa33\rho=\frac{Q}{\frac{4\pi a^3}{3}}

Ein=qb4πϵ0a3E_{in}=\frac{qb}{4\pi\epsilon_0a^3}

b>a

E.A=qϵ0E.A=\frac{q}{\epsilon_0}

E0=q4πϵ0b2E_0=\frac{q}{4\pi\epsilon_0b^2}

Potential

VaVinfinite=infaE.drV_a-V_{infinite}=\smallint_{inf}^aE.dr

Va=infaE.drV_a=-\smallint_{inf}^aE.dr

Va=[infbE0.dr+abEin.dr]V_a=-[\smallint_{inf}^bE_0.dr+\smallint_{a}^bE_{in}.dr]

Va=[infbkQr2dr+bakQrR3dr]V_a=-[\smallint_{inf}^b\frac{kQ}{r^2}dr+\smallint_{b}^a \frac{kQr}{R^3}dr]

Vin=kQ(3a2b2)2a3V_{in}=\frac{kQ(3a^2-b^2)}{2a^3}

b=a;b=a;

Vin=3Q8πϵ0aV_{in}=\frac{3Q}{8\pi\epsilon_0 a}

V=Vin(r=a)Vin(r=0)∆V=V_{in}(r=a)-V_{in}(r=0)

V=Q8πϵ0a∆V=\frac{-Q}{8\pi\epsilon_0 a}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS