A long straight wire of radius R carries a steady current I. The current is uniformly distributed over its cross section. The magnetic field at a distance 2a/3 from its centre is
We know that
∮B.dl=μ0i\oint B.dl=\mu_0i∮B.dl=μ0i
B∮dl=μ0i=B.(2πa)=μ0iB\oint dl=\mu_0i=B.(2\pi a)=\mu_0iB∮dl=μ0i=B.(2πa)=μ0i
B=μ0i2πaB=\frac{\mu_0i}{2\pi a}B=2πaμ0i
Magnetic field at centre of wire
When
r=2a3r=\frac{2a}{3}r=32a
∮B′.dl=μ0ien\oint B'.dl=\mu_0i_{en}∮B′.dl=μ0ien
ien=iπ×(2a3)2πa2=49ii_{en}=i\frac{\pi \times( \frac{2a}{3})^2}{\pi a^2}=\frac{4}{9}iien=iπa2π×(32a)2=94i
B′(2π×2a3)=μ04i9B'(2\pi\times\frac{2a}{3})=\mu_0\frac{4i}{9}B′(2π×32a)=μ094i
B′=μ0I3πaB'=\frac{\mu_0 I}{3 \pi a}B′=3πaμ0I
B′B=23\frac{B'}{B}=\frac{2}{3}BB′=32
B′=23BB'=\frac{2}{3}BB′=32B
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments