Question #213291

A long straight wire of radius R carries a steady current I. The current is uniformly distributed over its cross section. The magnetic field at a distance 2a/3 from its centre is


1
Expert's answer
2021-07-06T11:40:02-0400

We know that

B.dl=μ0i\oint B.dl=\mu_0i

Bdl=μ0i=B.(2πa)=μ0iB\oint dl=\mu_0i=B.(2\pi a)=\mu_0i

B=μ0i2πaB=\frac{\mu_0i}{2\pi a}

Magnetic field at centre of wire

B=μ0i2πaB=\frac{\mu_0i}{2\pi a}

When

r=2a3r=\frac{2a}{3}

B.dl=μ0ien\oint B'.dl=\mu_0i_{en}

ien=iπ×(2a3)2πa2=49ii_{en}=i\frac{\pi \times( \frac{2a}{3})^2}{\pi a^2}=\frac{4}{9}i

B(2π×2a3)=μ04i9B'(2\pi\times\frac{2a}{3})=\mu_0\frac{4i}{9}

B=μ0I3πaB'=\frac{\mu_0 I}{3 \pi a}

BB=23\frac{B'}{B}=\frac{2}{3}

B=23BB'=\frac{2}{3}B



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS