Question #212829
In a certain region of space, the electric potential is V (x, y, z) = Axy − Bx2 + Cy, where A, B, and
C are positive constants, (a) Calculate the x-, y- and z-components of the electric field.(b) At what
point is the electric field equal to zero?
1
Expert's answer
2021-07-04T17:45:22-0400

Gives

V(x,y,z)=Axy-Bx2-Cy

E=VE=-\nabla V

Ex=dVdx=(Ay2Bx)E_x=-\frac{dV}{dx}=-(Ay-2Bx)

Ey=dVdy=(Ax+c)E_y=-\frac{dV}{dy}=-(Ax+c)

Ez=dVdz=0E_z=-\frac{dV}{dz}=0

E=Ex+Ey+EzE=E_x+E_y+E_z

Find out point where electric field is zero


E=i^(Ay2Bx)j^(Ax+c)+k^E=-\hat{i}(Ay-2Bx)-\hat{j}(Ax+c)+\hat{k}

E=0

i^componentszero\hat{i} components zero

Ax+c=0

x=cAx=-\frac{c}{A}

Ay-2Bx=0

y=2BxAy=\frac{2Bx}{A}

Put x value

y=2BcA2y=-\frac{2Bc}{A^2}

Point (x,y,z)=(cA,2BcA2,0)(x,y,z)=(-\frac{c}{A},\frac{2Bc}{A^2},0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS