The electric field at the middle of a certain distance (d=4 m) can be found as:
E c → = E 1 c → + E 2 c → = k q 1 r 1 c 2 r 1 c ^ + k q 2 r 2 c 2 r 2 c ^ \overrightarrow{E_c}=\overrightarrow{E_{1c}}+\overrightarrow{E_{2c}}=k\dfrac{q_1}{{r_{1c}}^2}\,\widehat{r_{1c}}+k\dfrac{q_2}{{r_{2c}}^2}\,\widehat{r_{2c}} E c = E 1 c + E 2 c = k r 1 c 2 q 1 r 1 c + k r 2 c 2 q 2 r 2 c
Following this we have to set the coordinates for the system so that r1 =(0,0)m and r2 =(4,0)m are the position vectors for the charges q1 = +8 nC and q2 = -2 nC and then we find everything related to the center of the distance rc =(d/2,0)=(2,0)m:
r 1 c → = r c → − r 1 → = ( 2 , 0 ) m − ( 0 , 0 ) m = ( 2 , 0 ) m r 2 c → = r c → − r 2 → = ( 2 , 0 ) m − ( 4 , 0 ) m = ( − 2 , 0 ) m r 1 c = r 2 c = d / 2 = 2 m r 1 c ^ = r 1 c → r 1 c = ( 2 , 0 ) 2 = ( 1 , 0 ) r 2 c ^ = r 2 c → r 2 c = ( − 2 , 0 ) 2 = ( − 1 , 0 ) \overrightarrow{r_{1c}}=\overrightarrow{r_c}-\overrightarrow{r_1}=(2,0)m-(0,0)m=(2,0)m
\\ \overrightarrow{r_{2c}}=\overrightarrow{r_c}-\overrightarrow{r_2}=(2,0)m-(4,0)m=(-2,0)m
\\ r_{1c}=r_{2c}=d/2=2\,m
\\ \widehat{r_{1c}}=\cfrac{\overrightarrow{r_{1c}}}{r_{1c}}=\frac{(2,0)}{2}=(1,0)
\\ \widehat{r_{2c}}=\cfrac{\overrightarrow{r_{2c}}}{r_{2c}}=\frac{(-2,0)}{2}=(-1,0) r 1 c = r c − r 1 = ( 2 , 0 ) m − ( 0 , 0 ) m = ( 2 , 0 ) m r 2 c = r c − r 2 = ( 2 , 0 ) m − ( 4 , 0 ) m = ( − 2 , 0 ) m r 1 c = r 2 c = d /2 = 2 m r 1 c = r 1 c r 1 c = 2 ( 2 , 0 ) = ( 1 , 0 ) r 2 c = r 2 c r 2 c = 2 ( − 2 , 0 ) = ( − 1 , 0 )
With this information we substitute to find E c → \overrightarrow{E_c} E c :
E c → = k q 1 r 1 c 2 r 1 c ^ + k q 2 r 2 c 2 r 2 c ^ \overrightarrow{E_c}=k\dfrac{q_1}{{r_{1c}}^2}\,\widehat{r_{1c}}+k\dfrac{q_2}{{r_{2c}}^2}\,\widehat{r_{2c}} E c = k r 1 c 2 q 1 r 1 c + k r 2 c 2 q 2 r 2 c
E c → = ( 8.988 × 1 0 9 N m 2 C 2 ) ( 8 × 1 0 − 9 C ) ( 2 m ) 2 ( 1 , 0 ) + ( 8.988 × 1 0 9 N m 2 C 2 ) ( − 2 × 1 0 − 9 C ) ( 2 m ) 2 ( − 1 , 0 ) \overrightarrow{E_c}=(8.988\times10^9\frac{Nm^2}{C^2})\frac{(8\times10^{-9}C)}{(2\,m)^2}(1,0)+(8.988\times10^9\frac{Nm^2}{C^2})\frac{(-2\times10^{-9}C)}{(2\,m)^2}(-1,0) E c = ( 8.988 × 1 0 9 C 2 N m 2 ) ( 2 m ) 2 ( 8 × 1 0 − 9 C ) ( 1 , 0 ) + ( 8.988 × 1 0 9 C 2 N m 2 ) ( 2 m ) 2 ( − 2 × 1 0 − 9 C ) ( − 1 , 0 )
E c → = ( 17.976 ) ( 1 , 0 ) N C + ( − 4.494 ) ( − 1 , 0 ) N C = ( 17.976 , 0 ) N C + ( 4.494 , 0 ) N C \overrightarrow{E_c}=(17.976)(1,0)\frac{N}{C}+(-4.494)(-1,0) \frac{N}{C}=(17.976,0)\frac{N}{C}+(4.494,0)\frac{N}{C} E c = ( 17.976 ) ( 1 , 0 ) C N + ( − 4.494 ) ( − 1 , 0 ) C N = ( 17.976 , 0 ) C N + ( 4.494 , 0 ) C N
→ E c → = ( 22.47 , 0 ) N C ⟹ E c = 22.47 N C \to \overrightarrow{E_c}=(22.47,0)\frac{N}{C} \implies {E_c}=22.47 \,\frac{N}{C} → E c = ( 22.47 , 0 ) C N ⟹ E c = 22.47 C N
In conclusion, the electric field midway between the charges is E c =22.47 N/C.
Reference:
Young, H. D., & Freedman, R. A. (2015). University Physics with Modern Physics and Mastering Physics (p. 1632). Academic Imports Sweden AB.
Comments