Question #210991

If a vector field A(x,y,z)=xz3ex - 2x2yzey+2yz4ez , calculate the divergence Ñ·A at point M(1,-1,-1).


1
Expert's answer
2021-06-29T10:01:29-0400

Gives


A(x,y,z)=xz3ex^+2x2yzey^+2yz4ez^A(x,y,z)=xz^3 \hat{e_x}+2x^2yz \hat{e_y}+2yz^4 \hat{e_z}

.A=(ddxex^+ddyey^+ddzez^)(xz3ex^+2x2yzey^+2yz4ez^)\nabla.A=(\frac{d}{dx}\hat{e_x}+\frac{d}{dy}\hat{e_y}+\frac{d}{dz}\hat{e_z})(xz^3 \hat{e_x}+2x^2yz \hat{e_y}+2yz^4 \hat{e_z} )

.A=z3+2x2z+8yz3\nabla.A=z^3+2x^2z+8yz^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS