Question #210990

1) If a scalar field φ(x,y,z)=3x2y-y3z2, calculate the gradient Ñφ at point M(1,-2,1).


1
Expert's answer
2021-06-28T17:01:03-0400

If we know the scalar field is φ(x,y,z)=3x2yy3z2φ(x,y,z)=3x^2y-y^3z^2, we only have to find the first partial derivatives to have the gradient of the function that describes the scalar field:


φ(x,y,z)=(φ(x,y,z)x,φ(x,y,z)y,φ(x,y,z)z)=(6xy,3(x2y2z2),2y3z)\bigtriangledown φ(x,y,z)= \begin{pmatrix} \frac{\partial φ(x,y,z)}{\partial x}, & \frac{\partial φ(x,y,z)}{\partial y}, & \frac{\partial φ(x,y,z)}{\partial z} \end{pmatrix} = \begin{pmatrix} 6xy, & 3(x^2-y^2z^2) , & -2y^3z \end{pmatrix}


The gradient can be calculated by substituting (x, y, z) = (1, -2, 1) and we find


φ(1,2,1)=(6(1)(2),3((1)2(2)2(1)2),2(2)3(1))\bigtriangledown φ(1,-2,1)= \begin{pmatrix} 6(1)(-2), & 3((1)^2-(-2)^2(1)^2) , & -2(-2)^3(1) \end{pmatrix}


    φ(1,2,1)=(12,9,16)\implies \bigtriangledown φ(1,-2,1)= \begin{pmatrix} -12, & -9 , & 16 \end{pmatrix} .


In conclusion, at the point (1, -2, 1) we find the gradient▽φ(1, -2, 1) to be (-12, -9, 16).


Reference:

  • Serway, R. A., & Jewett, J. W. (2018). Physics for scientists and engineers. Cengage learning.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS