1. A solid conducting sphere of radius 40 cm has a charge of 5 µC. If the potential is zero
at infinity. Find the value of the potential at the following distances from the center of
the sphere:
a) 50 cm b) 40 cm c) 25 cm
φ={32kqR−kqr22R3if r<R,kqrif r≥R;\varphi= \begin{cases} \frac 32\frac{kq}{R}- \frac{kqr^2}{2R^3}&\text{if } r<R, \\ \frac{kq}{r}&\text{if } r≥R; \end{cases}φ={23Rkq−2R3kqr2rkqif r<R,if r≥R;
a)
φ=9⋅109⋅5⋅10−60.5=90 kV,\varphi=\frac{9\cdot 10^9\cdot 5\cdot 10^{-6}}{0.5}=90~kV,φ=0.59⋅109⋅5⋅10−6=90 kV,
b)
φ=9⋅109⋅5⋅10−60.4=112.5 kV,\varphi=\frac{9\cdot 10^9\cdot 5\cdot 10^{-6}}{0.4}=112.5~kV,φ=0.49⋅109⋅5⋅10−6=112.5 kV,
c)
φ=32⋅9⋅109⋅5⋅10−60.4−9⋅109⋅5⋅10−6⋅0.2522⋅0.43=146.8 kV.\varphi=\frac 32\cdot \frac{9\cdot 10^9\cdot 5\cdot 10^{-6}}{0.4} -\frac{9\cdot 10^9\cdot 5\cdot 10^{-6}\cdot 0.25^2}{2\cdot 0.4^3}= 146.8~kV.φ=23⋅0.49⋅109⋅5⋅10−6−2⋅0.439⋅109⋅5⋅10−6⋅0.252=146.8 kV.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments