Question #202046

9. In Fig.2

v1= √2(16)sin Wt V,

V2 =√2(24) sin(Wt +90°) V, and

v3=√2(15) sin(Wt -90°) V.

Determine the source voltage, e


1
Expert's answer
2021-06-02T13:11:33-0400
  • Gives

V1=2(16)sin(wt)V_1=\sqrt2(16)sin(wt)

V2=24sin(wt+90°)V_2=\sqrt24sin(wt+90°)

V3=2(15)sin(wt90°)V_3=\sqrt2(15)sin(wt-90°)

V=VRMSsin(wt+ϕ)V=V_{RMS}sin(wt+\phi)


V=16sin(wt+0)+24sin(wt+90)+15sin(wt90)V=16sin(wt+0)+24sin(wt+90)+15sin(wt-90)



V1=16/(θ=0°);V2=24/(θ=90°);V3=15/(θ=90°)V_1=16/(\theta=0°);V_2=24/(\theta=90°);V_3=15/(\theta=-90°)

Now resultant voltage

V=V1+V2+V3V=V_1+V_2+V_3

V=(V1=16/(θ=0°);V2=24/(θ=90°);V3=15/(θ=90°))V=(V_1=16/(\theta=0°);V_2=24/(\theta=90°);V_3=15/(\theta=-90°))


V=16(cos0°+sin0°)+24(cos90°+sin90°)+15(sin(90°)+cos(90°))V=16(cos0°+sin0°)+24(cos90°+sin90°)+15(sin(-90°)+cos(-90°))

V=16+015+j(0+24+0)V=16+0-15+j(0+24+0)

V=1+j(24)

Converting poler form

V=5+j24

Resultant velocity

V=52sin(wt+24°)V=5\sqrt{2}sin(wt+24°)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS