consider the vector A=sin(π÷2)i - sin(π÷2x)j, what is the divergence of the vector A
Gives
A=sinπ2i^+sinπ2xj^A=sin\frac{\pi}{2} \hat{i}+sin\frac{\pi}{2x}\hat{j}A=sin2πi^+sin2xπj^
Wheresinπ2=1sin\frac{\pi}{2}=1sin2π=1
∇.A=(ddxi^+ddyj^).(sinπ2i^+sinπ2xj^)\nabla. A=(\frac{d}{dx}\hat{i}+\frac{d}{dy}\hat{j}).(sin\frac{\pi}{2} \hat{i}+sin\frac{\pi}{2x}\hat{j})∇.A=(dxdi^+dydj^).(sin2πi^+sin2xπj^)
∇.A=ddx(1)+ddy(sinπ2x)\nabla. A=\frac{d}{dx}(1)+\frac{d}{dy}(sin\frac{\pi}{2x})∇.A=dxd(1)+dyd(sin2xπ)∇.A=0+0=0\nabla.A=0+0=0∇.A=0+0=0
∇.A=0\nabla .A=0∇.A=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments