Question #193671

consider the vector A=sin(π÷2)i - sin(π÷2x)j, what is the divergence of the vector A


1
Expert's answer
2021-05-17T12:29:34-0400

Gives

A=sinπ2i^+sinπ2xj^A=sin\frac{\pi}{2} \hat{i}+sin\frac{\pi}{2x}\hat{j}

Wheresinπ2=1sin\frac{\pi}{2}=1

.A=(ddxi^+ddyj^).(sinπ2i^+sinπ2xj^)\nabla. A=(\frac{d}{dx}\hat{i}+\frac{d}{dy}\hat{j}).(sin\frac{\pi}{2} \hat{i}+sin\frac{\pi}{2x}\hat{j})

.A=ddx(1)+ddy(sinπ2x)\nabla. A=\frac{d}{dx}(1)+\frac{d}{dy}(sin\frac{\pi}{2x}).A=0+0=0\nabla.A=0+0=0

.A=0\nabla .A=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS