Answer
Relationship between potential vector and magnetic field can given as
B ⃗ = ∇ ⃗ × A ⃗ \vec{B}=\vec{\nabla}\times \vec{A} B = ∇ × A
Multiplying by d s ⃗ \vec{ds} d s Both side
∫ B ⃗ . d s ⃗ = ∫ ∇ ⃗ × ( A ⃗ . d s ⃗ ) \int\vec{B}.\vec{ds}=\int\vec{\nabla}\times (\vec{A}.\vec{ds}) ∫ B . d s = ∫ ∇ × ( A . d s )
By stoke's thoerm
∫ ∇ ⃗ × ( A ⃗ . d s ⃗ ) = ∫ A ⃗ . d l ⃗ \int\vec{\nabla}\times (\vec{A}.\vec{ds}) =\int \vec{A} . \vec{dl} ∫ ∇ × ( A . d s ) = ∫ A . d l
So
∫ A ⃗ . d l ⃗ = ∫ B ⃗ . d s ⃗ \int \vec{A}.\vec{dl}=\int \vec{B}.\vec{ds} ∫ A . d l = ∫ B . d s
Consider a solenoid of radius "a"
Potential vector and dl vector are in same direction and magnetic field and ds are in same direction
So
∫ A d l = ∫ B d s \int {A}{dl}=\int {B}{ds} ∫ A d l = ∫ B d s
Potential vector and magnetic field are constant so
A ∫ d l = B ∫ d s A\int dl=B\int {ds} A ∫ d l = B ∫ d s
A ( 2 π r ) = B ( π a 2 ) A(2\pi r) =B(\pi a^2) A ( 2 π r ) = B ( π a 2 )
A = B a 2 2 r A=\frac{Ba^2}{2r}\\ A = 2 r B a 2
So by putting the value in above equation
A = B a 2 2 r A=\frac{Ba^2}{2r}\\ A = 2 r B a 2
A = 0.3 ( 0.02 ) 2 2 ( 0.07 ) = 8.57 × 1 0 − 4 T m A=\frac{0.3(0.02)^2}{2(0.07)}=8.57\times10^{-4}Tm A = 2 ( 0.07 ) 0.3 ( 0.02 ) 2 = 8.57 × 1 0 − 4 T m
Comments