Question #187194

. Using a hydrogen atom as an example, compare the gravitational 

and the electrostatic forces between a proton and an electron


1
Expert's answer
2021-05-03T18:44:20-0400

Using Coulomb’s Law


F=kq1q2r2F = \dfrac{k q_1 q_2}{ r^2}


We have, q1=q2=1.6×1019Cq_1 = q_2 = 1.6 \times 10^-{19} C

r=0.05nmr = 0.05nm (in the case of Hydrogen atom)


Hence,

F=9×109×1.6×1019×1.6×1019(0.05×109)2F = \dfrac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{(0.05\times 10^{-9})^2}


F=9.216×108NF = 9.216 \times 10^{-8}N




Using Newton’s Universal Gravitational Law,


F=Gm1m2r2F =\dfrac{ G m_1 m_2 }{ r^2}


We can determine the strength of the gravitational force between the proton and electron.


Mass of electron =m1=9.1×1031kg= m_1 = 9.1 \times 10^{-31}kg


Mass of proton =m2=1.67×1027kg= m_2 = 1.67 \times 10^{-27}kg


Hence,

F=6.67×1011×9.1×1031×1.67×1027(0.05×109)2F = \dfrac{6.67 \times10^{-11} \times 9.1 \times 10^{-31} \times 1.67 \times 10^{-27}}{(0.05 \times 10^{-9})^2}


F=40.544×1045NF = 40.544 \times 10^{-45}N


Hence, we can compare the gravitational and the electrostatic forces between a Proton and an Electron.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS