Question #181041

What is the capacitance and self-inductance per length of a cable that consists of a solid inner conductor (radius R1) and a thin coaxial conducting cylindrical shell (inner radius R2). The region between the conductors is filled with a uniformly distributed dielectric (dielectric constant Kappa). Mu=Mu0

1
Expert's answer
2021-04-15T07:20:46-0400

Capacitance 

Assume an imaginary Gaussian cylinder of radius r where R2rR1R_2 \eqslantless r\eqslantless R_1

By Gauss law E.da=Qϵ    E.2πrh=Qϵ    E=Qϵ2πrh\int \vec{E}.\vec{d}a= \frac{Q}{\epsilon} \implies |\vec{E}|. 2 \pi rh =\frac{Q}{\epsilon} \implies |\vec{E}|= \frac{Q}{\epsilon 2 \pi rh}

Voltage difference integral of electric field , V=R2R1Edr=Qϵ2πrhR2R11rdr=Qϵ2πhln(R1R2)V=\int _{R_2} ^{R_1} \vec{E}dr= \frac{Q}{\epsilon 2 \pi rh} \int _{R_2} ^{R_1} \frac{1}{r}dr = \frac{Q}{\epsilon 2 \pi h} \ln(\frac{R_1}{R_2})

We know Q=CV

Q=CQϵ2πhln(R1R2)    Ch=ϵ2πhln(R1R2)Q=\frac{CQ}{\epsilon 2 \pi h} \ln(\frac{R_1}{R_2}) \implies \frac{C}{h}=\frac{\epsilon 2 \pi}{h} \ln(\frac{R_1}{R_2}) h represents the length


Inductance 

Using Ampere's law and imaginary circular path of radius r

B.dl=μI    B.2πr=μI    B=μI2πr\oint \vec{B}.\vec{d}l= \mu I \implies \vec{B}. 2 \pi r = \mu I \implies \vec{B}= \frac{ \mu I }{ 2 \pi r}

If you consider a flux on the surface

ϕ=R2R1μI2πhdr=μIh2πR2R11rdr=μIh2πln(R1R2)\phi=\int _{R_2} ^{R_1} \frac{\mu I}{2 \pi}hdr= \frac{\mu I h}{2 \pi} \int _{R_2} ^{R_1} \frac{1}{r}dr = \frac{\mu I h}{2 \pi} \ln(\frac{R_1}{R_2})

We know Vdrop=dϕdt=LdIdt=μh2πln(R1R2)dIdtV_{drop}= \frac{d \phi}{dt}=L\frac{dI}{dt} =\frac{\mu h}{2 \pi} \ln(\frac{R_1}{R_2})\frac{d I}{dt}

Lh=μ2πln(R1R2)dIdt\frac{L}{h}=\frac{\mu}{2 \pi} \ln(\frac{R_1}{R_2})\frac{d I}{dt} h represents the length


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS