Consider the sketch below
U = k q 1 q 2 r 12 + k q 2 q 3 r 23 + k q 3 q 1 r 31 U= k\frac{q_1q_2}{r_{12}}+k\frac{q_2q_3}{r_{23}}+k\frac{q_3q_1}{r_{31}} U = k r 12 q 1 q 2 + k r 23 q 2 q 3 + k r 31 q 3 q 1
U = k [ 2 q × 2 q x + 2 q × 4 q 1 − x + 4 q × 2 q 1 ] U= k[\frac{2q \times 2q}{x}+\frac{2q \times4q}{1-x}+\frac{4q \times2q}{1}] U = k [ x 2 q × 2 q + 1 − x 2 q × 4 q + 1 4 q × 2 q ]
U = k [ 4 q 2 x + 8 q 2 1 − x + 8 q 2 1 ] U= k[\frac{4q^2}{x}+\frac{8q^2}{1-x}+\frac{8q^2}{1}] U = k [ x 4 q 2 + 1 − x 8 q 2 + 1 8 q 2 ]
U = k q 2 [ 4 x + 8 1 − x + 8 1 ] U= kq^2[\frac{4}{x}+\frac{8}{1-x}+\frac{8}{1}] U = k q 2 [ x 4 + 1 − x 8 + 1 8 ]
Now potential energy of the system depends on the value of x.
U = [ 4 x + 8 1 − x + 8 1 ] U= [\frac{4}{x}+\frac{8}{1-x}+\frac{8}{1}] U = [ x 4 + 1 − x 8 + 1 8 ]
Minimizing differentiating w.r.t x
U ′ = [ − 4 x 2 + 8 ( 1 − x ) 2 ] U'= [-\frac{4}{x^2}+\frac{8}{(1-x)^2}] U ′ = [ − x 2 4 + ( 1 − x ) 2 8 ]
for U' to be minimum, it should be equal to zero.
U ′ = [ − 4 x 2 + 8 ( 1 − x ) 2 ] = 0 U'= [-\frac{4}{x^2}+\frac{8}{(1-x)^2}]=0 U ′ = [ − x 2 4 + ( 1 − x ) 2 8 ] = 0
8 ( 1 − x ) 2 = 4 x 2 \frac{8}{(1-x)^2}=\frac{4}{x^2} ( 1 − x ) 2 8 = x 2 4
x = − 1 − 2 , x = 2 − 1 x=-1-\sqrt{2},\:x=\sqrt{2}-1 x = − 1 − 2 , x = 2 − 1
Now, x = − 1 − 2 x=-1-\sqrt{2} x = − 1 − 2 is not applicable hence we will take x = 2 − 1 \:x=\sqrt{2}-1 x = 2 − 1
Therefore x = 0.4142 m
Hence between 2q and 2q, the distance is 0.4142 m and the distance between second 2q and 4q is 0.5858 m
Comments