Given,
Radius of the inner spherical shell = a
Radius of the outer spherical shell = b
Volume charge density (ρ)=kr2
a<r<b
Electric field at a distance a<r ?
dQ=ρ4πr2dr
Electric field at a distance r, from the center of the spherical shell,
dE(r)=4πϵo1r2dQ
Now, taking the integration of both side,
∫0EdE(r)=∫ar4πϵo1r2dQ
Now, substituting the values,
E(r)=4πϵo1∫arr2ρ×4πr2dr
⇒E(r)=4πϵo1∫arr2kr2×4πr2dr
⇒E(r)=4πϵo4π×k∫ar(r2)dr
⇒E(r)=ϵok(3r3)ar
⇒E(r)=3ϵok(r3−a3)
Comments