Question #175776

Consider a hollow charged shell of inner radius a and outer radius b . The volume

charge density is ρ(r) = k

r

2

( k is constant) in the region a < r < b. The magnitude


of the electric field produced at distance r > a is ?


1
Expert's answer
2021-03-26T11:37:47-0400

Given,

Radius of the inner spherical shell = a

Radius of the outer spherical shell = b

Volume charge density (ρ)=kr2(\rho)=kr^2

a<r<ba<r<b

Electric field at a distance a<ra<r ?

dQ=ρ4πr2drdQ= \rho 4\pi r^2 dr

Electric field at a distance r, from the center of the spherical shell,

dE(r)=14πϵodQr2dE(r)=\frac{1}{4\pi \epsilon_o}\frac{dQ}{r^2}

Now, taking the integration of both side,

0EdE(r)=ar14πϵodQr2\int_0^E dE(r)=\int_a^r\frac{1}{4\pi \epsilon_o}\frac{dQ}{r^2}

Now, substituting the values,

E(r)=14πϵoarρ×4πr2r2drE(r) =\frac{1}{4\pi \epsilon_o}\int_a^r\frac{\rho \times 4\pi r^2}{r^2}dr


E(r)=14πϵoarkr2×4πr2r2dr\Rightarrow E(r) =\frac{1}{4\pi \epsilon_o}\int_a^r\frac{kr^2 \times 4\pi r^2}{r^2}dr


E(r)=4π×k4πϵoar(r2)dr\Rightarrow E(r)=\frac{4\pi\times k}{4\pi \epsilon_o}\int_a^r(r^2)dr


E(r)=kϵo(r33)ar\Rightarrow E(r) = \frac{k}{\epsilon_o}(\frac{r^3}{3})_a^r


E(r)=k3ϵo(r3a3)\Rightarrow E(r)=\frac{k}{3\epsilon_o}(r^3-a^3)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS