Given,
E(r)=r4R4Emax
As per the Gauss rule,
∮E.ds=ϵoqin
⇒E∮ds=ϵqin
⇒E(4πr2)=ϵqin
⇒E=4πϵor2qin
if r=R,
Emax=4πϵoR2Q
As per the Gauss rule,
∮E(r).ds=ϵoqin
⇒r4R4Emax.4πr2=ϵoqin
⇒4πϵoR2QR44πr6=ϵoqin
⇒R6Qr6=qin
We know that dq=ρdV
we know that dV=4πr2dr
∫dq=∫ρ(r)4πr2dr=qin
⇒∫ρ(r)4πr2dr=qin
⇒∫ρ(r)r2dr=4πR6Qr6
Now, taking the differentiation,
⇒drd(∫ρ(r)r2dr)=4πR6Qdrd(r6)
⇒ρ(r)r2=4πR66Qr5
⇒ρ(r)=2πR63Qr3
For potential function,
∫dV=∫4πϵordq
dq=ρ(r)(4πr2)dr
⇒V= ∫4πϵorρ(r)(4πr2)dr=∫ϵo2πR63Qr3(r)dr
⇒V=2πϵoR63Q∫(r3)dr
V=8πϵoR63Qr4
Comments