Question #174832

A sphere of charge Q and radius R has an electric field 𝐸(𝑟) = 𝑟4𝐸𝑚𝑎𝑥/𝑅4 for r ≤ R. (a) Find the charge density of the sphere as a function of r. (b) Find the potential function in all space for this object. Give your answers in terms of Q, R, and r.


1
Expert's answer
2021-03-24T20:03:40-0400

Given,

𝐸(𝑟)=𝑟4𝐸𝑚𝑎𝑥𝑅4𝐸(𝑟) = 𝑟^4\dfrac{𝐸_{𝑚𝑎𝑥}}{𝑅^4}

As per the Gauss rule,

E.ds=qinϵo\oint E.ds=\dfrac{q_{in}}{\epsilon_o}

Eds=qinϵ\Rightarrow E\oint ds=\dfrac{q_{in}}{\epsilon}


E(4πr2)=qinϵ\Rightarrow E (4\pi r^2)=\dfrac{q_{in}}{\epsilon}

E=qin4πϵor2\Rightarrow E = \dfrac{q_{in}}{4\pi \epsilon_o r^2}

if r=R,

Emax=Q4πϵoR2E_{max}=\dfrac{Q}{4\pi \epsilon_o R^2}

As per the Gauss rule,

E(r).ds=qinϵo\oint E(r).ds=\dfrac{q_{in}}{\epsilon_o}


𝑟4𝐸𝑚𝑎𝑥𝑅4.4πr2=qinϵo\Rightarrow 𝑟^4\dfrac{𝐸_{𝑚𝑎𝑥}}{𝑅^4}. 4\pi r^2=\dfrac{q_{in}}{\epsilon_o}


Q4πϵoR24πr6R4=qinϵo\Rightarrow \dfrac{Q}{4\pi \epsilon_o R^2}\dfrac{4\pi r^6}{R^4}=\frac{q_{in}}{\epsilon_o}


Qr6R6=qin\Rightarrow \dfrac{Qr^6}{R^6}={q_{in}}

We know that dq=ρdVdq=\rho dV

we know that dV=4πr2drdV=4\pi r^2 dr

dq=ρ(r)4πr2dr=qin\int dq=\int\rho(r)4\pi r^2 dr =q_{in}


ρ(r)4πr2dr=qin\Rightarrow \int\rho(r)4\pi r^2 dr =q_{in}


ρ(r)r2dr=Qr64πR6\Rightarrow \int\rho(r) r^2 dr =\dfrac{Q r^6}{4\pi R^6}

Now, taking the differentiation,

ddr(ρ(r)r2dr)=Q4πR6d(r6)dr\Rightarrow \frac{d}{dr}(\int\rho(r) r^2 dr) =\dfrac{Q }{4\pi R^6}\frac{d(r^6)}{dr}


ρ(r)r2=6Qr54πR6\Rightarrow {\rho(r) r^2}=\dfrac{6Qr^5}{4\pi R^6}


ρ(r)=3Qr32πR6\Rightarrow \rho(r)=\dfrac{3 Qr^3}{2\pi R^6}

For potential function,

dV=dq4πϵor\int dV= \int \dfrac{{dq}}{4\pi \epsilon_o r}


dq=ρ(r)(4πr2)drdq=\rho(r)(4\pi r^2)dr


V=\Rightarrow V = \frac{}{} ρ(r)(4πr2)dr4πϵor=3Qr3ϵo2πR6(r)dr\int \dfrac{\rho(r)(4\pi r^2)dr}{4\pi \epsilon_o r}=\int\dfrac{3 Qr^3}{\epsilon_o2\pi R^6}( r)dr


V=3Q2πϵoR6(r3)dr\Rightarrow V = \dfrac{3Q}{2\pi \epsilon_o R^6}\int(r^3)dr


V=3Qr48πϵoR6V=\dfrac{3Qr^4}{8\pi \epsilon_oR^6}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS