Question #174404

I'm a second year physics undergraduate, and currently learning using Vanderlinde's Classical Electromagnetics Theory. One of the books question I found is:


2-12 Show that the quadrupole term of the multipole expansion of the potential can be written


V3=18πε0qir(i)[r(i)(1r)]V_{3}=\frac{1}{8\pi\varepsilon_{0}}\sum q_i\vec{r}^{\left(i\right)}\cdot \vec{\nabla }\left[\vec{r}^{\left(i\right)}\cdot \vec{\nabla }\left(\frac{1}{r}\right)\right]


How should I solve this? Where do I start?


1
Expert's answer
2021-03-23T11:45:28-0400

We can start by defining multipole expansion. It is a mathematical series representing a function that depends on angles. it is usually two angles on a sphere. These series are useful because they can often be truncated, meaning that only the first few terms need to be retained for a good approximation to the original function.

Proof: The scalar potential V(r)V(\vec{r}) at a point r\vec{r} due to a system of changes is given by

V(r)=14πϵovρrdVrrV(\vec{r})=\frac{1}{4 \pi \epsilon_o}\int_{v'} \frac{\rho \vec{r' dV'}}{ |\vec{r}-\vec{r'}|}



We assume that the point is at a large distance from the charge distribution. If V{V'} varies over the charge distribution, then r>>rr>>r'

Since, V(r)=14πϵovρrdVrrV(\vec{r})=\frac{1}{4 \pi \epsilon_o}\int_{v'} \frac{\rho \vec{r' dV'}}{ |\vec{r}-\vec{r'}|}

Then rr=[r22rr+r2]0.5=[12v^rr+(rr)2]0.5{ |\vec{r}-\vec{r}'|}=[r^2-2\vec{r}\vec{r}'+r^2]^{0.5}=[1-\frac{2\hat{v}\vec{r}'}{r}+(\frac{r'}{r})^2]^{0.5}

Where v^rr\hat{v}\equiv\frac{\vec{r}'}{r}

Then using the fact that r is much larger than r', we can write

1rr=1r1[12v^rr+(rr)2]0.5\frac{1}{{ |\vec{r}-\vec{r}'|}}=\frac{1}{r}\frac{1}{[1-\frac{2\hat{v}\vec{r}'}{r}+(\frac{r'}{r})^2]^{0.5}}

and using the binomial expansion

1[12v^rr+(rr)2]0.5=1+r^rr+12r2(3(r^.rr2)+0(rr)3\frac{1}{[1-\frac{2\hat{v}\vec{r}'}{r}+(\frac{r'}{r})^2]^{0.5}}=1+\frac{\hat{r}-\vec{r}}{r}+ \frac{1}{2r^2}(3(\hat{r} .\vec{r}-r'^2)+0(\frac{\vec{r}'}{r})^3

We neglect the third spherical term. Hence, the above potential can be written

V(r)=14πϵorvρ(r^)[1+r^rr+12r2(3(r^.rr2)+0(rr)3]dVV(\vec{r})=\frac{1}{4 \pi\epsilon_o r}\int_{v'} \rho (\hat{r}) [1+\frac{\hat{r}-\vec{r}}{r}+ \frac{1}{2r^2}(3(\hat{r} .\vec{r}-r'^2)+0(\frac{\vec{r}'}{r})^3] dV'

We write it as V(v)=Vmon(v)+Vdip(v)+Vquad(v)+...V(v)=V_{mon}(v)+V_{dip}(v)+V_{quad}(v)+...

Vmon(r)=14πϵorvρ(r^)dVV_{mon}(\vec{r})=\frac{1}{4 \pi\epsilon_o r}\int_{v'} \rho (\hat{r}) dV'

Vdip(r)=14πϵor2vρ(r^)[(r^r)]dVV_{dip}(\vec{r})=\frac{1}{4 \pi\epsilon_o r^2}\int_{v'} \rho (\hat{r}) [(\hat{r} -r')] dV'

Vquad(r)=18πϵor3vρ(r^)[(3(r^r2)r2]dVV_{quad}(\vec{r})=\frac{1}{8 \pi\epsilon_o r^3}\int_{v'} \rho (\hat{r})[(3(\hat{r}-r'^2)-r'^2] dV'

Now writing ρ(r)\rho(r') in terms of discrete charge distribition

ρ(r)=Total changeTotal volume=dqidvi\rho (r')=\frac{Total \space change}{Total \space volume}=\frac{\sum dq_i}{\sum dv_i}

and using the properties of integration of divergence

V.rr3dV=srr3ds=1r2sds=4π\int_V \vec{\bigtriangledown}.\frac{\vec{r}}{r^3}dV=\int_s \frac{\vec{r}}{r^3}ds=\frac{1}{r^2}\int_s ds=4 \pi

.rr3=.1r=21r=4πδ(r)    δ(r)=14πr21r\vec{\bigtriangledown}.\frac{\vec{r}}{r^3}=\vec{\bigtriangledown}. {\triangledown}\frac{\vec{-1}}{r}=- {\triangledown}^2\frac{\vec{1}}{r}=4 \pi \delta (r) \implies \delta( \vec{r})= \frac{-1}{4 \pi}{r}{\triangledown}^2 \frac{1}{r}

We can rewrite the quadrupole term as

V3=18πϵoqir(i)[r(i)1r]V_3= \frac{1}{8 \pi\epsilon_o}\sum q_i \vec{r}^{(i)}\vec{\bigtriangledown}[\vec{r}^{(i)}\vec{\bigtriangledown} \frac{1}{r}]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS