Question #172692

An electron (m = 9.11 x 10-31kg, q = 1.60 x 10-19C) at rest is accelerated through an electric potential difference of 12.0 V. It then enters a uniform magnetic field of 0.100 T [up], when initially moving [N].

a) Find the initial speed of the electron entering the magnetic field.

b) Find the magnetic force on the electron entering the magnetic field.

c) Find the radius of the circular path of the electron in the field. 


1
Expert's answer
2021-03-21T11:36:41-0400

(a) Let's write the law of conservation of energy:


KE1+PE1=KE2+PE2,KE_1+PE_1=KE_2+PE_2,12mv12+qV1=12mv22+qV2.\dfrac{1}{2}mv_1^2+qV_1=\dfrac{1}{2}mv_2^2+qV_2.

Since the electron accelerates from rest, v1=0v_1=0. Then, we get:


v2=2q(V1V2)m,v_2=\sqrt{\dfrac{2q(V_1-V_2)}{m}},v2=21.61019 C12 V9.111031 kg=2.05106 ms.v_2=\sqrt{\dfrac{2\cdot1.6\cdot10^{-19}\ C\cdot12\ V}{9.11\cdot10^{-31}\ kg}}=2.05\cdot10^6\ \dfrac{m}{s}.

(b) We can find the magnitude of the magnetic force as follows:


FB=qvBsinθ,F_B=qvBsin\theta,FB=1.61019 C2.05106 ms0.1 Tsin90=3.281014 N.F_B=1.6\cdot10^{-19}\ C\cdot2.05\cdot10^6\ \dfrac{m}{s}\cdot0.1\ T\cdot sin90^{\circ}=3.28\cdot10^{-14}\ N.

(c) We can find the radius of the circular path from the formula:


r=mvqB=9.111031 kg2.05106 ms1.61019 C0.1 T=1.17104 m.r=\dfrac{mv}{qB}=\dfrac{9.11\cdot10^{-31}\ kg\cdot2.05\cdot10^6\ \dfrac{m}{s}}{1.6\cdot10^{-19}\ C\cdot0.1\ T}=1.17\cdot10^{-4}\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS