F 1 = G m 1 m 2 r 2 , F_1=\frac{Gm_1m_2}{r^2}, F 1 = r 2 G m 1 m 2 ,
F 2 = k q 1 q 2 r 2 , F_2=\frac{kq_1q_2}{r^2}, F 2 = r 2 k q 1 q 2 ,
p 1 = m 1 v 1 , p_1=m_1v_1, p 1 = m 1 v 1 ,
p 2 = m 2 v 2 , p_2=m_2v_2, p 2 = m 2 v 2 ,
{ ( F 2 − F 1 ) r = m 1 v 1 2 2 + m 2 v 2 2 2 p 1 = p 2 \begin{cases}
(F_2-F_1)r=\frac{m_1v_1^2}{2}+\frac{m_2v_2^2}{2}\\
p_1=p_2
\end{cases} { ( F 2 − F 1 ) r = 2 m 1 v 1 2 + 2 m 2 v 2 2 p 1 = p 2
{ 2 k q 1 q 2 r − 2 G m 1 m 2 r = m 1 v 1 2 + m 2 v 2 2 m 1 v 1 = m 2 v 2 \begin{cases}
\frac{2kq_1q_2}{r}-\frac{2Gm_1m_2}{r}=m_1v_1^2+m_2v_2^2 \\
m_1v_1=m_2v_2
\end{cases} { r 2 k q 1 q 2 − r 2 G m 1 m 2 = m 1 v 1 2 + m 2 v 2 2 m 1 v 1 = m 2 v 2
where
v 1 = 2 m 2 ( k q 1 q 2 − G m 1 m 2 ) m 1 r ( m 1 + m 2 ) v_1=\sqrt{\frac{2m_2(kq_1q_2-Gm_1m_2)}{m_1r(m_1+m_2)}} v 1 = m 1 r ( m 1 + m 2 ) 2 m 2 ( k q 1 q 2 − G m 1 m 2 )
v 2 = 2 m 1 ( k q 1 q 2 − G m 1 m 2 ) m 2 r ( m 1 + m 2 ) v_2=\sqrt{\frac{2m_1(kq_1q_2-Gm_1m_2)}{m_2r(m_1+m_2)}} v 2 = m 2 r ( m 1 + m 2 ) 2 m 1 ( k q 1 q 2 − G m 1 m 2 )
v 1 ≈ 24.4 m s v_1\approx 24.4~\frac ms v 1 ≈ 24.4 s m
v 2 ≈ 53.7 m s v_2\approx 53.7~\frac ms v 2 ≈ 53.7 s m
Comments