Find the electric field ⃗ (E)due to a disk above ‘z’ height from its centre which has a
constant surface charge σ. Given that disk’s radius is ‘a’.
dE=xdq4πε0(r2+x2)3/2,dE=\frac{xdq}{4\pi \varepsilon_0 (r^2+x^2)^{3/2}},dE=4πε0(r2+x2)3/2xdq,
E(x)=∫0a2πrσxdr4πε0(r2+x2)3/2=σ2ε0(1−xa2+x2),E(x)=\int_0^a\frac{2\pi r\sigma xdr}{4\pi \varepsilon_0 (r^2+x^2)^{3/2}}=\frac{\sigma}{2\varepsilon_0}(1-\frac{x}{\sqrt{a^2+x^2}}),E(x)=∫0a4πε0(r2+x2)3/22πrσxdr=2ε0σ(1−a2+x2x),
E(z)=σ2ε0(1−za2+z2).E(z)=\frac{\sigma}{2\varepsilon_0}(1-\frac{z}{\sqrt{a^2+z^2}}).E(z)=2ε0σ(1−a2+z2z).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments