Question #170575

An electron of mass 9.1×10(-31)kg enters a 1.7T magnetic field at right angle to the field .if the initial energy of the electron is 4.3MeV, calculate the radius of rotation of the electron. Calculate also the centripetal force on the electron and the frequency of circulation


1
Expert's answer
2021-03-16T11:38:25-0400

For the electron entering magnetic field, centripetal force is equal to Lorentz force.

F=mv2r=qvB\displaystyle F= \frac{mv^2}{r} = qvB

So,

r=mvqB\displaystyle r = \frac{mv}{qB}

The initial energy of the electron is 4.3MeV, which is a full energy E=mc2+Ek=0.511  MeV+Ek=4.3  MeVE = mc^2 + E_k = 0.511\; MeV + E_k =4.3 \; MeV

Ek=3.789  MeVE_k = 3.789 \; MeV

Let's calculate v with simultaneous conversion to SI

v=2Ekm=23.7891.610199.11031=1.15106  m/s\displaystyle v= \sqrt{\frac{2E_k}{m}} =\sqrt{\frac{2 \cdot 3.789 \cdot 1.6 \cdot 10^{-19}}{9.1 \cdot 10^{-31}}} = 1.15 \cdot 10^6 \; m/s

Then

r=9.110311.151061.610191.7=3.847106m=3.847  μm\displaystyle r = \frac{9.1 \cdot 10^{-31} \cdot 1.15 \cdot 10^6}{1.6 \cdot 10^{-19} \cdot 1.7} =3.847 \cdot 10^{-6} \, m = 3.847\; \mu m

The centripetal force on the electron:

F=qvB=1.610191.151061.7=3.1281013  NF =qvB = 1.6 \cdot 10^{-19} \cdot 1.15 \cdot 10^6 \cdot 1.7=3.128 \cdot 10^{-13} \; N

The frequency of circulation:

ω=qBm=1.610191.79.11031=0.31012  rad/s\displaystyle \omega =\frac{qB}{m} = \frac{1.6\cdot 10^{-19} \cdot 1.7}{9.1 \cdot 10^{-31}} = 0.3 \cdot 10^{12} \; rad/s



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS