Question #167973

[G 7.24) An alternating current Io cos (wt) (amplitude 0.5 A, frequency 60 Hz) flows down a straight wire, which

runs along the aris of a toroidal coil with rectangular cross section (inner radius 1 cm, outer radius 2 cm, height 1

cm, 1000 turns). The coil is connected to a 500 ohm resistor.


(a) In the quasistatic approximation, what emf is induced in the toroid? Find the current, I, (t), in the resistor.

b) Calculate the back emf in the coil, due to the curent I, (t). What is the ratio of the amplitudes of this back emf

and the "direct" emf in ( a ) ?



1
Expert's answer
2021-03-01T17:35:09-0500

a)

Φ=Nab0hμ0I(t)2πsdsdz=μ0NI(t)2πhlnba,\Phi=N\int _a^b\int_0^h\frac{\mu _0 I(t)}{2\pi s}dsdz=\frac{\mu _0 N I(t)}{2\pi }h \text{ln}\frac ba,

ε=dΦdt=μ0N2πhlnbadIdt=μ0NhωI02πsin ωtlnba=2.61104 V,\varepsilon=-\frac{d \Phi}{dt}=-\frac{\mu _0 N }{2\pi }h \text{ln}\frac ba \frac{dI}{dt}=\frac{\mu _0 N h \omega I_0 }{2\pi } \text{sin }\omega t\text{ln}\frac ba=2.61\cdot 10^{-4}~\text{V},

IR=εR=μ0NhωI02πR sinωtlnba=5.23107 A,I_R=\frac{\varepsilon}{R}=\frac{\mu _0 N h \omega I_0 }{2\pi R }\text{ sin} \omega t\text{ln}\frac ba=5.23\cdot 10^{-7}~\text{A},

b)

εb=LdIRdt=(μ0N2h2πlnba)(μ0Nhω2I02πRcosωtlnba)=μ02N3h2ω2I04π2Rcosωtln2ba=2.73107 V,\varepsilon _b=-L\frac{dI_R}{dt}=-(\frac{\mu _0 N^2 h }{2\pi }\text{ln}\frac ba )(-\frac{\mu _0 N h \omega^2 I_0 }{2\pi R } \text{cos}\omega t\text{ln}\frac ba)=\frac{\mu _0^2 N^3 h ^2\omega^2 I_0 }{4\pi^2 R } \text{cos}\omega t\text{ln}^2\frac ba=2.73\cdot 10^{-7}~\text{V}, εbε=μ0N2hω2πRlnba=1.05103.\frac{\varepsilon_b}{\varepsilon}=\frac{\mu _0 N^2 h \omega }{2\pi R } \text{ln}\frac ba=1.05\cdot 10^{-3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS