Question #161895

Convert the vector A = xy ax - 2x ay to cylindrical system.



1
Expert's answer
2021-02-08T18:40:08-0500

Given vector,

A=xy(ax2xay)A=xy(a_x-2xa_y)


A=xyax2x2yay\Rightarrow A= xya_x-2x^2ya_y

Now, x=acosθx=a\cos\theta

y=asinθy=a\sin\theta

z=zz=z

B=acosθ×asinθ×ay2×(acosθ)2×asinθ×ayB=a\cos\theta\times a\sin\theta\times a_y-2\times (a\cos\theta)^2\times a\sin\theta\times a_y

we know that a=ax=aya=a_x= a_y for the circle

=a3(cosθ.sinθ2cos2θ.sinθ)=a^3(cos\theta.\sin\theta-2\cos^2\theta.\sin\theta )


=a3(12sin2θcosθ.sin2θ)=a^3(\frac{1}{2}\sin2\theta-cos\theta. \sin2\theta)


=a3sin2θ(12cosθ2)=a^3\sin2\theta(\frac{1-2\cos\theta}{2})


=4a3sin2θcos2(θ2)2=\frac{4a^3\sin2\theta \cos^2(\frac{\theta}{2})}{2}


=2a3sin2θcos2(θ2)=2a^3\sin2\theta \cos^2(\frac{\theta}{2})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS