Question #159964

Two equal positive point charges q1=q2=2µC interact with a third point charge q3=4µC. Find

the magnitude and direction of the total (net) force on q3. (q1 is 0.3m above the origin; q2 is

0.3m below the origin; q3 is 0.4m right from the origin).


1
Expert's answer
2021-01-30T16:47:59-0500

Let's write the forces that act on charge q3q_3 due to charges q1q_1and q2q_2:


F1=kq1q3r2,F_1=\dfrac{kq_1q_3}{r^2},F2=kq2q3r2.F_2=\dfrac{kq_2q_3}{r^2}.


We can find the distance from the charges q1q_1and q3q_3 as well as q2q_2 and q3q_3 from the Pythagorean theorem:


r=(0.3 m)2+(0.4 m)2=0.5 m.r=\sqrt{(0.3\ m)^2+(0.4\ m)^2}=0.5\ m.

Since, q1=q2q_1=q_2 and r1=r2=rr_1=r_2=r the magnitudes of two forces are equal. Let's write the components of forces F1F_1 and F2F_2 in projections on xx and yy axis:


F1cosθ+F2cosθ=2F1cosθ,F_1cos\theta+F_2cos\theta=2F_1cos\theta,F1sinθ+F2sinθ=0.-F_1sin\theta+F_2sin\theta=0.

As we can see, yy-components cancel out, so we can write the net force on q3q_3:


Fnet=2kq1q3r2cosθ.F_{net}=2\dfrac{kq_1q_3}{r^2}cos\theta.

We can find angle θ\theta from the geometry:


θ=cos1(0.4 m0.5 m)=36.86.\theta=cos^{-1}(\dfrac{0.4\ m}{0.5\ m})=36.86^{\circ}.

Finally, we can find the net force on q3q_3:


Fnet=29109 Nm2C2(2106 C)2(0.5 m)2cos36.86=0.23 N.F_{net}=2\cdot\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(2\cdot10^{-6}\ C)^2}{(0.5\ m)^2}cos36.86^{\circ}=0.23\ N.

Answer:

Fnet=0.23 N,F_{net}=0.23\ N, in +x+x-direction.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS