Question #157200

Using Maxwell's equation in vacuum, derive the wave equation for the x-component of the electric field vector associated with an electromagnetic wave


1
Expert's answer
2021-01-25T14:05:28-0500

×E=Bt​\overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t }×E=Bt​\overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t }×E=Bt​\overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t }×E=Bt​\overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t }


×B=μ0ϵ0Et​\overrightarrow{\nabla}\times\overrightarrow{B}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t }

×B=μ0ϵ0Et​\overrightarrow{\nabla}\times\overrightarrow{B}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t }×B=μ0ϵ0Et​\overrightarrow{\nabla}\times\overrightarrow{B}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t }×B=μ0ϵ0Et​\overrightarrow{\nabla}\times\overrightarrow{B}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t }




×E(x,t)i=ijkxyzE(x,t)00=Exj\overrightarrow{\nabla}\times\overrightarrow{E}(x,t)\overrightarrow{i}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\ \overrightarrow{E}(x,t) &0 & 0 \end{vmatrix}=\frac{\partial E}{\partial x }\overrightarrow{j}






×B(x,t)j=ijkxyz0B(x,t)0=Bxi\overrightarrow{\nabla}\times\overrightarrow{B}(x,t)\overrightarrow{j}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\ 0 & \overrightarrow{B}(x,t) & 0 \end{vmatrix}=-\frac{\partial B}{\partial x }\overrightarrow{i}







Ex=Bt\frac{\partial E}{\partial x }=-\frac{\partial B}{\partial t }






Bx=μ0ϵ0Et\frac{\partial B}{\partial x }=-\mu_0\epsilon_0\frac{\partial E}{\partial t }


2Ex2=xBt=tBx=t(μ0ϵ0Et)=μ0ϵ02Et2\frac{\partial^2 E}{\partial x^2 }=-\frac{\partial}{\partial x }\frac{\partial B}{\partial t }=-\frac{\partial}{\partial t }\frac{\partial B}{\partial x }=-\frac{\partial}{\partial t }(-\mu_0\epsilon_0\frac{\partial E}{\partial t })=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 }


2Ex2=μ0ϵ02Et2\frac{\partial^2 E}{\partial x^2 }=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 }






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS